Rationalizing the Denominator Extension Lesson 10.1

In Section 6.1, you used properties to simplify radical expressions. A radical expression is in simplest form when the following are true:

- No radicands have perfect square factors other than 1.
- No radicands contain fractions.
- No radicals appear in the denominator of a fraction.

The process of removing a radical from the denominator of a fraction is called rationalizing the denominator. This can be done two ways.

1. Multiply the fraction by an appropriate form of 1 to eliminate the radical from the denominator.
2. Multiply the fraction by the conjugate of the denominator.

EXAMPLE (I Simplifying a Radical Expression

Simplify $\sqrt{\frac{1}{3}}$.

EXAMPLE (1) Simplifying a Radical Expression

$$
\begin{aligned}
& \text { Simplify } \sqrt{\frac{1}{3}} . \\
& \qquad \sqrt{\frac{1}{3}}=\frac{\sqrt{1}}{\sqrt{3}} \quad \text { Quotient Property of Square Roots }
\end{aligned}
$$

EXAMPLE (1) Simplifying a Radical Expression

$$
\begin{aligned}
& \text { Simplify } \sqrt{\frac{1}{3}} * \\
& \qquad \begin{array}{rlr}
\sqrt{\frac{1}{3}} & =\frac{\sqrt{1}}{\sqrt{3}} & \text { Quotient Property of Square Roots } \\
& =\frac{\sqrt{1}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} & \text { Multiply by } \frac{\sqrt{3}}{\sqrt{3}} .
\end{array}
\end{aligned}
$$

EXAMPLE (1 Simplifying a Radical Expression

$$
\begin{aligned}
& \text { Simplify } \sqrt{\frac{1}{3}} . \\
& \qquad \begin{array}{rlr}
\sqrt{\frac{1}{3}} & =\frac{\sqrt{1}}{\sqrt{3}} & \text { Quotient Property of Square Roots } \\
& =\frac{\sqrt{1}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} & \text { Multiply by } \frac{\sqrt{3}}{\sqrt{3}} . \\
& =\frac{\sqrt{1 \cdot 3}}{\sqrt{3 \cdot 3}} & \text { Product Property of Square Roots }
\end{array}
\end{aligned}
$$

EXAMPLE (1 Simplifying a Radical Expression

$$
\begin{aligned}
& \text { Simplify } \sqrt{\frac{1}{3}} . \\
& \qquad \begin{array}{rlr}
\sqrt{\frac{1}{3}} & =\frac{\sqrt{1}}{\sqrt{3}} & \\
& =\frac{\sqrt{1}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} & \\
& =\frac{\text { Quotient Property of Square Roots }}{\sqrt{3 \cdot 3}} & \text { Multiply by } \frac{\sqrt{3}}{\sqrt{3}} \cdot \\
& =\frac{\sqrt{3}}{\sqrt{9}} & \text { Product Property of Square Roots } \\
\text { Simplify. }
\end{array}
\end{aligned}
$$

EXAMPLE (1) Simplifying a Radical Expression

$$
\begin{aligned}
& \text { Simplify } \sqrt{\frac{1}{3}} \text { * } \\
& \qquad \begin{aligned}
\sqrt{\frac{1}{3}} & =\frac{\sqrt{1}}{\sqrt{3}} & & \text { Quotient Property of Square Roots } \\
& =\frac{\sqrt{1}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} & & \text { Multiply by } \frac{\sqrt{3}}{\sqrt{3}} . \\
& =\frac{\sqrt{1 \cdot 3}}{\sqrt{3 \cdot 3}} & & \text { Product Property of Square Roots } \\
& =\frac{\sqrt{3}}{\sqrt{9}} & & \text { Simplify. } \\
& =\frac{\sqrt{3}}{3} & & \text { Evaluate the square root. }
\end{aligned}
\end{aligned}
$$

Using Conjugates

The binomials $a \sqrt{b}+c \sqrt{d}$ and $a \sqrt{b}-c \sqrt{d}$ are called conjugates. Notice how the sign in the middle is different. Multiplying a radical expression by its conjugate will remove the radical sign.

$$
\begin{aligned}
& (a \sqrt{b}+c \sqrt{d})(a \sqrt{b}-c \sqrt{d}) \\
= & (a \sqrt{b})(a \sqrt{b})+(a \sqrt{b})(-c \sqrt{d})+(c \sqrt{d})(a \sqrt{b})+(c \sqrt{d})(-c \sqrt{d}) \\
= & a^{2} \sqrt{b^{2}}-a c \sqrt{b d}+a c \sqrt{b d}-c^{2} \sqrt{d^{2}} \\
= & a^{2} \sqrt{b^{2}}-c^{2} \sqrt{d^{2}} \\
= & a^{2} b-c^{2} d
\end{aligned}
$$

Example: $\quad \frac{1}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}=\frac{3+\sqrt{2}}{3^{2}-(\sqrt{2})^{2}}=\frac{3+\sqrt{2}}{9-2}=\frac{3+\sqrt{2}}{7}$

