Solving Systems of Linear and Quadratic Equations 9.5

Remember these?

$$2x + y = 8$$

Systems of Linear Equations
We had 3 methods to solve them.

x-y=10

Method 1 - Graphing

Solve for y.

$$y = -2x + 8$$

$$y = x - 10$$

Remember these?

Systems of Linear Equations

$$2x + y = 8$$
$$x - y = 10$$

Method 2 - Substitution

$$y = -2x + 8$$

 $x \neq (-y = 10) = 10$
 $x + 2x - 8 = 10$
 $3x = 18$
 $x = 6$
 $y = -12 + 8$
 $y = -4$
 $y = -4$
 $y = -4$

Remember these?

$$2x + y = 8$$

Systems of Linear Equations

$$x - y = 10$$

Method 3 - Elimination

$$2x + y = 8$$

$$+ x - y = 10$$

$$3x = 18$$

$$x = 6$$

$$(x) yy = 100$$

$$-y = 4$$

$$y = -4$$

(6, -4) All 3 methods give us the same answer (6.4).

Now let's look at systems of Linear and Quadratic Equations!

Visualize all of the possible solutions to a Line & a Parabola

1 solution as an Ordered pair

2 solutions

No solution

Solve the System Algebraically Use Substitution

$$y = x^{2} + 1$$

$$y - x = 1$$

$$(xy^{2} + x1 \Rightarrow 1 x = 1)$$

$$x^{2} - x = 0$$

$$x(x-1) = 0$$

$$x = 0 \quad or \quad x - 1 = 0$$

$$x = 0 \quad or \quad x = 1$$

$$y = 0^{2} + 1 \quad (0, 1)$$

$$y = 1$$

$$x = 1$$

$$y = 1^{2} + 1 \quad (1, 2)$$

$$y = 2$$

Answer: (0,1) (1,2)

Solve the System Algebraically Use Substitution

$$y = x^{2} - 2x + 2$$

$$y - 2x = -2$$

$$y = 2x - 2$$

$$(2x = 2x)^{2} = x^{2}x + 2x + 2$$

$$0 = x^{2} - 4x + 4$$

$$0 = (x - 2)(x - 2)$$

$$0 = x - 2$$

$$x = 2$$

$$(2, 2)$$

$$y - 2(2) = -2$$

$$y - 4 = -2$$

$$y = 2$$

Answer: (2,2)

Solve the System Algebraically Use Elimination

$$y = x^{2} - 3x - 2$$

$$y = -3x - 8$$

$$y = x^{2} - 3x - 2$$

$$-(y = -3x - 8)$$

$$0 = x^{2} + 6$$

$$-6 = x^{2}$$

The square of a real number cannot be negative. So, the system has no real solutions.