

SOLVING QUADRATIC FUNCTIONS USING THE QUADRATIC FORMULA

Lesson 9.4

Another way to solve quadratic equations is to use the quadratic formula.

Quadratic Formula

The real solutions of the quadratic equation $ax^2 + bx + c = 0$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where $a \neq 0$ and $b^2 - 4ac \geq 0$. This is called the quadratic formula.

Solve $2x^2 - 5x + 3 = 0$ using the quadratic formula.

Solve $2x^2 - 5x + 3 = 0$ using the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic Formula

Solve $2x^2 - 5x + 3 = 0$ using the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(3)}}{2(2)}$$

Quadratic Formula

Substitute 2 for a, −5 for b, and 3 for c.

Solve $2x^2 - 5x + 3 = 0$ using the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Quad
= $\frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(3)}}{2(2)}$ Substant
= $\frac{5 \pm \sqrt{1}}{4}$ Simp

Quadratic Formula

Substitute 2 for a, -5 for b, and 3 for c.

Simplify.

Solve $2x^2 - 5x + 3 = 0$ using the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(3)}}{2(2)}$$

Quadratic Formula

Substitute 2 for a, -5 for b, and 3 for c.

Simplify.

 $=\frac{5\pm1}{4}$

Evaluate the square root.

Solve $2x^2 - 5x + 3 = 0$ using the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(3)}}{2(2)}$$

Quadratic Formula

Substitute 2 for a, -5 for b, and 3 for c.

Simplify.

 $=\frac{5\pm1}{4}$

Evaluate the square root.

So, the solutions are
$$x = \frac{5+1}{4} = \frac{3}{2}$$
 and $x = \frac{5-1}{4} = 1$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 discriminant

You can use the discriminant to determine the number of real solutions of a quadratic equation.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 discriminant

You can use the discriminant to determine the number of real solutions of a quadratic equation.

Interpreting the Discriminant

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 discriminant

You can use the discriminant to determine the number of real solutions of a quadratic equation.

Interpreting the Discriminant

$$b^2 - 4ac > 0$$

- two real solutions
- two x-intercepts

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 discriminant

You can use the discriminant to determine the number of real solutions of a quadratic equation.

Interpreting the Discriminant

$$b^2 - 4ac > 0$$

$$b^2 - 4ac = 0$$

- two real solutions
- one real solution
- two x-intercepts
- one x-intercept

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 discriminant

You can use the discriminant to determine the number of real solutions of a quadratic equation.

Interpreting the Discriminant

two real solutions

two x-intercepts

$$b^2 - 4ac > 0$$
 $b^2 - 4ac = 0$ $b^2 - 4ac < 0$

$$b^2 - 4ac < 0$$

- no real solutions
- no x-intercepts

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

$$b^2 - 4ac = 8^2 - 4(1)(-3)$$
 Substitute 1 for a, 8 for b, and -3 for c.

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

$$b^2 - 4ac = 8^2 - 4(1)(-3)$$
 Substitute 1 for a, 8 for b, and -3 for c.
= 64 + 12 Simplify.

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

$$b^2 - 4ac = 8^2 - 4(1)(-3)$$
 Substitute 1 for a, 8 for b, and -3 for c.
= $64 + 12$ Simplify.
= 76 Add.

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

$$b^2 - 4ac = 8^2 - 4(1)(-3)$$
 Substitute 1 for a, 8 for b, and -3 for c.
= $64 + 12$ Simplify.
= 76 Add.

- The discriminant is greater than 0, so the equation has two real solutions.
- b. Determine the number of real solutions of $2x^2 + 7 = 6x$.

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

$$b^2 - 4ac = 8^2 - 4(1)(-3)$$
 Substitute 1 for a, 8 for b, and -3 for c.
= $64 + 12$ Simplify.
= 76 Add.

- : The discriminant is greater than 0, so the equation has two real solutions.
- b. Determine the number of real solutions of $2x^2 + 7 = 6x$.

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

$$b^2 - 4ac = 8^2 - 4(1)(-3)$$
 Substitute 1 for a, 8 for b, and -3 for c.
= $64 + 12$ Simplify.
= 76 Add.

- The discriminant is greater than 0, so the equation has two real solutions.
- b. Determine the number of real solutions of $2x^2 + 7 = 6x$.

$$b^2 - 4ac = (-6)^2 - 4(2)(7)$$
 Substitute 2 for a, -6 for b, and 7 for c.

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

$$b^2 - 4ac = 8^2 - 4(1)(-3)$$
 Substitute 1 for a, 8 for b, and -3 for c.
= $64 + 12$ Simplify.
= 76 Add.

- The discriminant is greater than 0, so the equation has two real solutions.
- b. Determine the number of real solutions of $2x^2 + 7 = 6x$.

$$b^2 - 4ac = (-6)^2 - 4(2)(7)$$
 Substitute 2 for a, -6 for b, and 7 for c.
= 36 - 56 Simplify.

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

$$b^2 - 4ac = 8^2 - 4(1)(-3)$$
 Substitute 1 for a, 8 for b, and -3 for c.
= $64 + 12$ Simplify.
= 76 Add.

- The discriminant is greater than 0, so the equation has two real solutions.
- b. Determine the number of real solutions of $2x^2 + 7 = 6x$.

$$b^2 - 4ac = (-6)^2 - 4(2)(7)$$
 Substitute 2 for a, -6 for b, and 7 for c.
= 36 - 56 Simplify.
= -20 Subtract.

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

$$b^2 - 4ac = 8^2 - 4(1)(-3)$$
 Substitute 1 for a, 8 for b, and -3 for c.
= $64 + 12$ Simplify.
= 76 Add.

- The discriminant is greater than 0, so the equation has two real solutions.
- b. Determine the number of real solutions of $2x^2 + 7 = 6x$.

Write the equation in standard form: $2x^2 - 6x + 7 = 0$.

$$b^2 - 4ac = (-6)^2 - 4(2)(7)$$
 Substitute 2 for a, -6 for b, and 7 for c.
= 36 - 56 Simplify.
= -20 Subtract.

The discriminant is less than 0, so the equation has no real solutions.