

SOLVING QUADRATIC FUNCTIONS BY COMPLETING THE SQUARE

Lesson 9.3

Another method for solving quadratic equations is **completing the square**. In this method, a constant *c* is added to the expression $x^2 + bx$ so that $x^2 + bx + c$ is a perfect square trinomial.

GO Key Idea

Words To complete the square for an expression of the form $x^2 + bx$, follow these steps.

Step 1: Find $\frac{b}{2}$.Step 2: Square the result in Step 1, $\left(\frac{b}{2}\right)^2$.

Step 3: Add the result in Step 2 to $x^2 + bx$. $x^2 + bx + \left(\frac{b}{2}\right)^2$

Factor the resulting expression as the square of a binomial.

Algebra
$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$

EXAMPLE 1 Completing the Square

a.
$$x^2 + 6x$$
 b. $x^2 - 9x$

EXAMPLE

Complete the square for each expression. Then factor the trinomial.

a. $x^2 + 6x$ b. $x^2 - 9x$ Step 1: $\frac{b}{2} = \frac{6}{2} = 3$

EXAMPLE

a.
$$x^2 + 6x$$

Step 1: $\frac{b}{2} = \frac{6}{2} = 3$
Step 2: $3^2 = 9$

EXAMPLE

a.
$$x^{2} + 6x$$

Step 1: $\frac{b}{2} = \frac{6}{2} = 3$
Step 2: $3^{2} = 9$
Step 3: $x^{2} + 6x + 9$

EXAMPLE

a.
$$x^{2} + 6x$$

Step 1: $\frac{b}{2} = \frac{6}{2} = 3$
Step 2: $3^{2} = 9$
Step 3: $x^{2} + 6x + 9$
 $x^{2} + 6x + 9 = (x + 3)^{2}$

EXAMPLE

- a. $x^{2} + 6x$ Step 1: $\frac{b}{2} = \frac{6}{2} = 3$ Step 2: $3^{2} = 9$ Step 3: $x^{2} + 6x + 9$ b. $x^{2} - 9x$ Step 1: $\frac{b}{2} = \frac{-9}{2}$
- $x^2 + 6x + 9 = (x + 3)^2$

EXAMPLE

- a. $x^{2} + 6x$ Step 1: $\frac{b}{2} = \frac{6}{2} = 3$ Step 2: $3^{2} = 9$ Step 3: $x^{2} + 6x + 9$ b. $x^{2} - 9x$ Step 1: $\frac{b}{2} = \frac{-9}{2}$ Step 2: $(\frac{-9}{2})^{2} = \frac{81}{4}$
- $x^2 + 6x + 9 = (x + 3)^2$

EXAMPLE

- a. $x^2 + 6x$ b. $x^2 9x$ Step 1: $\frac{b}{2} = \frac{6}{2} = 3$ Step 1: $\frac{b}{2} = \frac{-9}{2}$ Step 2: $3^2 = 9$ Step 2: $\left(\frac{-9}{2}\right)^2 = \frac{81}{4}$ Step 3: $x^2 + 6x + 9$ Step 3: $x^2 9x + \frac{81}{4}$
- $x^2 + 6x + 9 = (x + 3)^2$

EXAMPLE

Complete the square for each expression. Then factor the trinomial.

a. $x^2 + 6x$ b. $x^2 - 9x$ Step 1: $\frac{b}{2} = \frac{6}{2} = 3$ Step 1: $\frac{b}{2} = \frac{-9}{2}$ Step 2: $3^2 = 9$ Step 2: $\left(\frac{-9}{2}\right)^2 = \frac{81}{4}$ Step 3: $x^2 + 6x + 9$ Step 3: $x^2 - 9x + \frac{81}{4}$ $x^2 + 6x + 9 = (x + 3)^2$ $x^2 - 9x + \frac{81}{4} = \left(x - \frac{9}{2}\right)^2$

On Your Own

Complete the square for each expression. Then factor the trinomial. 1. $x^2 + 10x$ **2.** $x^2 - 4x$ **3.** $x^2 + 7x$

$$x^{2} + 10x + 25 = (x + 5)^{2} \qquad x^{2} - 4x + 4 = (x - 2)^{2} \qquad x^{2} + 7x + \frac{49}{4} = \left(x + \frac{7}{2}\right)^{2}$$

To solve a quadratic equation by completing the square, write the equation in the form $x^2 + bx = d$.

Step 1: Add/subtract the constant to the right side of the equal sign.

Step 2: Take $\frac{b}{2}$, then square it.

Step 3: Add the result in Step 2 to both sides.

Step 4: Factor

Step 5: Take the Square root.

Step 1: Add/subtract the constant to the right side of the equal sign.

Step 2: Take $\frac{b}{2}$, then square it.

Step 3: Add the result in Step 2 to both sides.

Step 4: Factor.

Step 5: Take the Square root.

Example $x^2 - 6x + 5 = 0$ Step 1: $x^2 - 6x + | = -5 + |$ Step 2: $(-3)^2 = 9$ Step 3: $x^2 - 6x + 9 = -5 + 9$ Step 4: $(x-3)^2 = 4$ Step 5: $\sqrt{(x-3)^2} = \pm \sqrt{4}$ Solve: $x - 3 = \pm 2$ x = 3 + 2 or x = 3 - 2x = 5 or x = 1

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

EXAMPLE

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

Find the *t*-values for which h = 0. So, solve $-16t^2 + 32t + 16 = 0$.

EXAMPLE

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

Find the *t*-values for which h = 0. So, solve $-16t^2 + 32t + 16 = 0$.

 $-16t^2 + 32t + 16 = 0$

EXAMPLE

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

Find the *t*-values for which h = 0. So, solve $-16t^2 + 32t + 16 = 0$.

$$-16t^2 + 32t + 16 = 0$$
$$t^2 - 2t - 1 = 0$$

EXAMPLE

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

Find the *t*-values for which h = 0. So, solve $-16t^2 + 32t + 16 = 0$.

$$-16t^{2} + 32t + 16 = 0$$
$$t^{2} - 2t - 1 = 0$$
$$t^{2} - 2t = 1$$

EXAMPLE

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

Find the *t*-values for which h = 0. So, solve $-16t^2 + 32t + 16 = 0$.

$$-16t^{2} + 32t + 16 = 0$$

$$t^{2} - 2t - 1 = 0$$

$$t^{2} - 2t = 1$$
Complete
the square.
$$t^{2} - 2t + 1 = 1 + 1$$

16 ft

EXAMPLE

EXAMPLE

16 ft

3

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

Find the *t*-values for which h = 0. So, solve $-16t^2 + 32t + 16 = 0$.

EXAMPLE

16 ft

3

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

Find the *t*-values for which h = 0. So, solve $-16t^2 + 32t + 16 = 0$.

EXAMPLE

16 ft

3

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

Find the *t*-values for which h = 0. So, solve $-16t^2 + 32t + 16 = 0$.

EXAMPLE

16 ft

3

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

Find the *t*-values for which h = 0. So, solve $-16t^2 + 32t + 16 = 0$.

The solutions are $x = 1 + \sqrt{2} \approx 2.4$ and $x = 1 - \sqrt{2} \approx -0.4$. Use the positive solution.

EXAMPLE

16 ft

3

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h = -16t^2 + 32t + 16$ gives the height *h* of the stone after *t* seconds. When does the stone land in the water?

Find the *t*-values for which h = 0. So, solve $-16t^2 + 32t + 16 = 0$.

The solutions are $x = 1 + \sqrt{2} \approx 2.4$ and $x = 1 - \sqrt{2} \approx -0.4$. Use the positive solution.

The stone lands in the water in about 2.4 seconds.

Homework Textbook pages 472 & 473: 6-17, 26, 33-36