

SOLVING QUADRATIC FUNCTIONS by COMPLETING THE SQUARE

Another method for solving quadratic equations is completing the square. In this method, a constant c is added to the expression $x^{2}+b x$ so that $x^{2}+b x+c$ is a perfect square trinomial.

50 Key Idea

Words To complete the square for an expression of the form $x^{2}+b x$, follow these steps.
Step 1: Find $\frac{b}{2}$.
Step 2: Square the result in Step 1, $\left(\frac{b}{2}\right)^{2}$.
Step 3: Add the result in Step 2 to $x^{2}+b x$.

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}
$$

Factor the resulting expression as the square of a binomial.
Algebra $x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$

Complete the square for each expression. Then factor the trinomial.
a. $x^{2}+6 x$
b. $x^{2}-9 x$

EXAMPLE \& Completing the Square

Complete the square for each expression. Then factor the trinomial.
a. $x^{2}+6 x$
b. $x^{2}-9 x$

Step 1: $\frac{b}{2}=\frac{6}{2}=3$

EXAMPLE \& Completing the Square

Complete the square for each expression. Then factor the trinomial.
a. $x^{2}+6 x$
b. $x^{2}-9 x$

Step 1: $\frac{b}{2}=\frac{6}{2}=3$
Step 2: $\quad 3^{2}=9$

EXAMPLE (q-Completing the Square

Complete the square for each expression. Then factor the trinomial.
a. $x^{2}+6 x$
b. $x^{2}-9 x$

Step 1: $\frac{b}{2}=\frac{6}{2}=3$
Step 2: $\quad 3^{2}=9$
Step 3: $x^{2}+6 x+9$

EXAMPLE (1 -Completing the Square

Complete the square for each expression. Then factor the trinomial.
a. $x^{2}+6 x$
b. $x^{2}-9 x$

Step 1: $\frac{b}{2}=\frac{6}{2}=3$
Step 2: $\quad 3^{2}=9$
Step 3: $x^{2}+6 x+9$
$x^{2}+6 x+9=(x+3)^{2}$

EXAMPLE q-Completing the Square

Complete the square for each expression. Then factor the trinomial.
a. $x^{2}+6 x$
b. $x^{2}-9 x$
Step 1: $\frac{b}{2}=\frac{6}{2}=3$
Step 1: $\frac{b}{2}=\frac{-9}{2}$

Step 2: $\quad 3^{2}=9$
Step 3: $x^{2}+6 x+9$
$x^{2}+6 x+9=(x+3)^{2}$

EXAMPLE (1 -Completing the Square

Complete the square for each expression. Then factor the trinomial.
a. $x^{2}+6 x$
b. $x^{2}-9 x$

Step 1: $\frac{b}{2}=\frac{6}{2}=3$
Step 1: $\frac{b}{2}=\frac{-9}{2}$
Step 2: $\quad 3^{2}=9$
Step 2: $\left(\frac{-9}{2}\right)^{2}=\frac{81}{4}$
Step 3: $x^{2}+6 x+9$
$x^{2}+6 x+9=(x+3)^{2}$

EXAMPLE q-Completing the Square

Complete the square for each expression. Then factor the trinomial.
a. $x^{2}+6 x$
b. $x^{2}-9 x$
Step 1: $\frac{b}{2}=\frac{6}{2}=3$
Step 1: $\frac{b}{2}=\frac{-9}{2}$

Step 2: $\quad 3^{2}=9$
Step 2: $\left(\frac{-9}{2}\right)^{2}=\frac{81}{4}$
Step 3: $x^{2}+6 x+9$
Step 3: $\quad x^{2}-9 x+\frac{81}{4}$
$x^{2}+6 x+9=(x+3)^{2}$

EXAMPLE (1 -Completing the Square

Complete the square for each expression. Then factor the trinomial.
a. $x^{2}+6 x$

Step 1: $\frac{b}{2}=\frac{6}{2}=3$
Step 2: $\quad 3^{2}=9$
Step 3: $x^{2}+6 x+9$
$x^{2}+6 x+9=(x+3)^{2}$
b. $x^{2}-9 x$

Step 1: $\frac{b}{2}=\frac{-9}{2}$
Step 2: $\left(\frac{-9}{2}\right)^{2}=\frac{81}{4}$
Step 3: $\quad x^{2}-9 x+\frac{81}{4}$
$x^{2}-9 x+\frac{81}{4}=\left(x-\frac{9}{2}\right)^{2}$

On Your Own

Complete the square for each expression. Then factor the trinomial.

1. $x^{2}+10 x$
$x^{2}+10 x+25=(x+5)^{2}$
2. $x^{2}-4 x$
$x^{2}-4 x+4=(x-2)^{2}$
3. $x^{2}+7 x$

$$
x^{2}+7 x+\frac{49}{4}=\left(x+\frac{7}{2}\right)^{2}
$$

To solve a quadratic equation by completing the square, write the equation in the form $x^{2}+b x=d$.

Step 1: Add/subtract the constant to the right side of the equal sign. Step 2: Take $\frac{b}{2}$, then square it.
Step 3: Add the result in Step 2 to both sides.
Step 4: Factor
Step 5: Take the Square root.

Completing the Square

Step 1: Add/subtract the constant to the right side of the equal sign.
Step 2: Take $\frac{b}{2}$, then square it.
Step 3: Add the result in Step 2 to both sides.
Step 4: Factor.
Step 5: Take the Square root.

Example

$$
x^{2}-6 x+5=0
$$

Step 1: $\quad x^{2}-6 x+\square=-5+\square$

Step 2: $\quad(-3)^{2}=9$
Step 3: $\quad x^{2}-6 x+\sqrt{9}=-5+9$
Step 4: $\quad(x-3)^{2}=4$
Step 5: $\quad \sqrt{(x-3)^{2}}= \pm \sqrt{4}$
Solve: $\quad x-3= \pm 2$

$$
\begin{array}{rll}
x=3+2 & \text { or } & x=3-2 \\
x=5 & \text { or } & x=1
\end{array}
$$

EXAMPLE
 3) Real-Life Application

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?

EXAMPLE
 3) Real-Life Application

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?

Find the t-values for which $h=0$. So, solve $-16 t^{2}+32 t+16=0$.

EXAMPLE
 3) Real-Life Application

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?

Find the t-values for which $h=0$. So, solve $-16 t^{2}+32 t+16=0$.

$$
-16 t^{2}+32 t+16=0
$$

EXAMPLE
 3) Real-Life Application

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?

Find the t-values for which $h=0$. So, solve $-16 t^{2}+32 t+16=0$.

$$
\begin{array}{r}
-16 t^{2}+32 t+16=0 \\
t^{2}-2 t-1=0
\end{array}
$$

EXAMPLE
 3. Real-Life Application

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?

Find the t-values for which $h=0$. So, solve $-16 t^{2}+32 t+16=0$.

$$
\begin{array}{r}
-16 t^{2}+32 t+16=0 \\
t^{2}-2 t-1=0 \\
t^{2}-2 t=1
\end{array}
$$

EXAMPLE
 3) Real-Life Application

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?

Find the t-values for which $h=0$. So, solve $-16 t^{2}+32 t+16=0$.

$$
\begin{aligned}
&-16 t^{2}+32 t+16=0 \\
& t^{2}-2 t-1=0 \\
& t^{2}-2 t=1 \\
& \text { Complete } \\
& \text { the square. }
\end{aligned} \rightarrow t^{2}-2 t+1=1+1
$$

EXAMPLE
 3) Real-Life Application

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?

Find the t-values for which $h=0$. So, solve $-16 t^{2}+32 t+16=0$.

$$
\begin{aligned}
-16 t^{2}+32 t+16 & =0 \\
t^{2}-2 t-1 & =0 \\
t^{2}-2 t & =1 \\
\begin{array}{l}
\text { Complete } \\
\text { the square }
\end{array} \rightarrow t^{2}-2 t+1 & =1+1 \\
(t-1)^{2} & =2
\end{aligned}
$$

EXAMPLE
 3) Real-Life Application

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?

Find the t-values for which $h=0$. So, solve $-16 t^{2}+32 t+16=0$.

$$
\begin{aligned}
-16 t^{2}+32 t+16 & =0 \\
t^{2}-2 t-1 & =0 \\
t^{2}-2 t & =1 \\
\begin{array}{l}
\text { Complete } \\
\text { the square, }
\end{array} \rightarrow t^{2}-2 t+1 & =1+1 \\
(t-1)^{2} & =2 \\
t-1 & = \pm \sqrt{2}
\end{aligned}
$$

EXAMPLE
 3 -Real-Life Application

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?

Find the t-values for which $h=0$. So, solve $-16 t^{2}+32 t+16=0$.

$$
\begin{aligned}
&-16 t^{2}+32 t+16=0 \\
& t^{2}-2 t-1=0 \\
& t^{2}-2 t=1 \\
& \text { Complete } \\
& \text { the square. } \rightarrow t^{2}-2 t+1=1+1 \\
&(t-1)^{2}=2 \\
& t-1= \pm \sqrt{2} \\
& t=1 \pm \sqrt{2}
\end{aligned}
$$

EXAMPLE (3) Real-LifeApplication

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?
Find the t-values for which $h=0$. So, solve $-16 t^{2}+32 t+16=0$.

$$
\begin{aligned}
&-16 t^{2}+32 t+16=0 \\
& t^{2}-2 t-1=0 \\
& t^{2}-2 t=1 \\
& \text { Complete } \\
& \text { the square } \rightarrow t^{2}-2 t+1=1+1 \\
&(t-1)^{2}=2 \\
& t-1= \pm \sqrt{2} \\
& t=1 \pm \sqrt{2}
\end{aligned}
$$

The solutions are $x=1+\sqrt{2} \approx 2.4$ and $x=1-\sqrt{2} \approx-0.4$. Use the positive solution.

EXAMPLE (3) Real-Life Application

You throw a stone from a height of 16 feet with an upward velocity of 32 feet per second. The function $h=-16 t^{2}+32 t+16$ gives the height h of the stone after t seconds. When does the stone land in the water?
Find the t-values for which $h=0$. So, solve $-16 t^{2}+32 t+16=0$.

$$
\begin{aligned}
-16 t^{2}+32 t+16 & =0 \\
t^{2}-2 t-1 & =0 \\
t^{2}-2 t & =1 \\
\begin{array}{l}
\text { Complete } \\
\text { the square. }
\end{array} \rightarrow t^{2}-2 t+1 & =1+1 \\
(t-1)^{2} & =2 \\
t-1 & = \pm \sqrt{2} \\
t & =1 \pm \sqrt{2}
\end{aligned}
$$

The solutions are $x=1+\sqrt{2} \approx 2.4$ and $x=1-\sqrt{2} \approx-0.4$. Use the positive solution.
The stone lands in the water in about 2.4 seconds.

Homework

Textbook pages 472 \& 473: 6-17, 26, 33-36

