

SOLVING QUADRATIC FUNCTIONS USING SQUARE ROOTS

Lesson 9.2

Solving Quadratic Equations Using Square Roots

You can solve $x^2 = d$ by taking the square root of each side.

GO Key Idea

Solving Quadratic Equations Using Square Roots

You can solve $x^2 = d$ by taking the square root of each side.

• When d > 0, $x^2 = d$ has two real solutions, $x = \pm \sqrt{d}$.

GO Key Idea

Solving Quadratic Equations Using Square Roots

You can solve $x^2 = d$ by taking the square root of each side.

- When d > 0, $x^2 = d$ has two real solutions, $x = \pm \sqrt{d}$.
- When d = 0, $x^2 = d$ has one real solution, x = 0.

GO Key Idea

Solving Quadratic Equations Using Square Roots

You can solve $x^2 = d$ by taking the square root of each side.

- When d > 0, $x^2 = d$ has two real solutions, $x = \pm \sqrt{d}$.
- When d = 0, $x^2 = d$ has one real solution, x = 0.
- When d < 0, $x^2 = d$ has no real solutions.

a. Solve $3x^2 - 27 = 0$ using square roots.

a. Solve $3x^2 - 27 = 0$ using square roots.

 $3x^2 - 27 = 0$ Write the equation.

a. Solve $3x^2 - 27 = 0$ using square roots.

EXAMPLE

1

 $3x^2 - 27 = 0$ Write the equation. $3x^2 = 27$ Add 27 to each side.

a. Solve $3x^2 - 27 = 0$ using square roots.

EXAMPLE

1

 $3x^2 - 27 = 0$ Write the equation. $3x^2 = 27$ Add 27 to each side. $x^2 = 9$ Divide each side by 3.

a. Solve $3x^2 - 27 = 0$ using square roots.

EXAMPLE

 $3x^2 - 27 = 0$ Write the equation. $3x^2 = 27$ Add 27 to each side. $x^2 = 9$ Divide each side by 3. $x = \pm \sqrt{9}$ Take the square root of each side.

a. Solve $3x^2 - 27 = 0$ using square roots.

EXAMPLE

 $3x^{2} - 27 = 0$ $3x^{2} = 27$ $x^{2} = 9$ $x = \pm \sqrt{9}$ $x = \pm 3$ Write the equation. Add 27 to each side. Divide each side by 3. Take the square root of each side. Simplify.

a. Solve $3x^2 - 27 = 0$ using square roots.

EXAMPLE

 $3x^{2} - 27 = 0$ $3x^{2} = 27$ $x^{2} = 9$ $x = \pm \sqrt{9}$ $x = \pm 3$ Write the equation. Add 27 to each side. Divide each side by 3. Take the square root of each side. Simplify.

The solutions are x = 3 and x = -3. b. Solve $x^2 - 10 = -10$ using square roots.

a. Solve $3x^2 - 27 = 0$ using square roots.

EXAMPLE

 $3x^{2} - 27 = 0$ $3x^{2} = 27$ $x^{2} = 9$ $x = \pm \sqrt{9}$ $x = \pm 3$ Write the equation. Add 27 to each side. Divide each side by 3. Take the square root of each side. Simplify.

The solutions are x = 3 and x = -3. **b.** Solve $x^2 - 10 = -10$ using square roots. $x^2 - 10 = -10$ Write the equation.

a. Solve $3x^2 - 27 = 0$ using square roots.

EXAMPLE

 $3x^{2} - 27 = 0$ $3x^{2} = 27$ $x^{2} = 9$ $x = \pm \sqrt{9}$ $x = \pm 3$ Write the equation. Add 27 to each side. Divide each side by 3. Take the square root of each side. Simplify.

The solutions are x = 3 and x = -3. **b.** Solve $x^2 - 10 = -10$ using square roots. $x^2 - 10 = -10$ Write the equation. $x^2 = 0$ Add 10 to each side.

EXAMPLE

a. Solve $3x^2 - 27 = 0$ using square roots. $3x^2 - 27 = 0$ Write the equation. $3x^2 = 27$ Add 27 to each side. $x^2 = 9$ Divide each side by 3. $x = \pm \sqrt{9}$ Take the square root of each side. Simplify. $x = \pm 3$ The solutions are x = 3 and x = -3. b. Solve $x^2 - 10 = -10$ using square roots. $x^2 - 10 = -10$ Write the equation. $x^2 = 0$ Add 10 to each side. Take the square root of each side. x = 0The only solution is x = 0.

c. Solve $-5x^2 + 11 = 16$ using square roots.

c. Solve $-5x^2 + 11 = 16$ using square roots. $-5x^2 + 11 = 16$ Write the equation.

EXAMPLE

1

c. Solve $-5x^2 + 11 = 16$ using square roots.

EXAMPLE

1

 $-5x^2 + 11 = 16$ Write the equation.

$$-5x^2 = 5$$
 Subtract 11 from each side.

c. Solve $-5x^2 + 11 = 16$ using square roots.

 $-5x^2 + 11 = 16$ Write the equation.

$$-5x^2 = 5$$
 Subtract 11 from each side.

$$x^2 = -1$$
 Divide each side by -5 .

The equation has no real solutions.

EXAMPLE

The square of a real number cannot be negative. That is why the equation in part c has no real solutions.

Solve the equation using square roots.

1.
$$-3x^2 = -75$$
 2. $x^2 + 12 = 10$ **3.** $4x^2 - 15 = -15$

Solve the equation using square roots.

1.
$$-3x^2 = -75$$
 2. $x^2 + 12 = 10$ **3.** $4x^2 - 15 = -15$

x = 5, x = -5

Solve the equation using square roots.

1.
$$-3x^2 = -75$$
 2. $x^2 + 12 = 10$ **3.** $4x^2 - 15 = -15$

x = 5, x = -5 no real solutions

Solve the equation using square roots.

1.
$$-3x^2 = -75$$

 $x = 5, x = -5$
2. $x^2 + 12 = 10$
3. $4x^2 - 15 = -15$
3. $x = 0$

a. Solve $(x - 1)^2 = 25$ using square roots.

b. Solve $9(x-2)^2 = 25$ using square roots.

a. Solve
$$(x - 1)^2 = 25$$
 using square roots.
 $(x - 1)^2 = 25$ Write the equation.

b. Solve $9(x-2)^2 = 25$ using square roots.

a. Solve $(x - 1)^2 = 25$ using square roots. $(x - 1)^2 = 25$ $x - 1 = \pm 5$ Write the equation.X - 1 = \pm 5Take the square root of each side.

Solving a Quadratic Equation Using Square Roots

b. Solve $9(x-2)^2 = 25$ using square roots.

EXAMPLE

2

a. Solve $(x - 1)^2 = 25$ using square roots. $(x - 1)^2 = 25$ Write the equation. $x - 1 = \pm 5$ Take the square root of each side. $x = 1 \pm 5$ Add 1 to each side.

2

EXAMPLE

So, the solutions are x = 1 + 5 = 6 and x = 1 - 5 = -4.

b. Solve $9(x-2)^2 = 25$ using square roots. $9(x-2)^2 = 25$ Write the equation. $(x-2)^2 = \frac{25}{9}$ Divide both sides by 9. $x-2 = \pm \frac{5}{3}$ Take the square root of each side. $x = 2 \pm \frac{5}{3}$ Add 2 to each side. So, the solutions are $x = 2 + \frac{5}{3} = 3\frac{2}{3}$ or $x = 2 - \frac{5}{3} = \frac{1}{3}$

EXAMPLE

3

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

EXAMPLE

3

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

3

EXAMPLE

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

The length ℓ is 3 times the width w, so $\ell = 3w$. Write an equation using the formula for the volume of a rectangular prism.

 $V = \ell wh$ Write the formula.

EXAMPLE

3

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

$V = \ell w h$	Write the formula.
270 = 3w(w)(3)	Substitute 270 for V, $3w$ for ℓ , and 3 for h.

EXAMPLE

3

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

$V = \ell w h$	Write the formula.
270 = 3w(w)(3)	Substitute 270 for V, $3w$ for ℓ , and 3 for h.
$270 = 9w^2$	Multiply.

EXAMPLE

3

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

$V = \ell w h$	Write the formula.
270 = 3w(w)(3)	Substitute 270 for V, $3w$ for ℓ , and 3 for h.
$270 = 9w^2$	Multiply.
$30 = w^2$	Divide each side by 9.

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

The length ℓ is 3 times the width w, so $\ell = 3w$. Write an equation using the formula for the volume of a rectangular prism.

$V = \ell w h$	Write the formula.
270 = 3w(w)(3)	Substitute 270 for V, $3w$ for ℓ , and 3 for h.
$270 = 9w^2$	Multiply.
$30 = w^2$	Divide each side by 9.
alls $\pm\sqrt{30} = w$	Take the square root of each side.
Use the positive solution	on.

5.5 feet is a reasonable solution because $\sqrt{30}$ falls $\pm\sqrt{30} = u$ between $\sqrt{25}$ and $\sqrt{36}$

3

EXAMPLE

So, the width is $\sqrt{30} \approx 5.5$ feet and the length is $3\sqrt{30} \approx 16.4$ feet.

Solve the equation using square roots.

4. $(x+7)^2 = 0$ **5.** $4(x-3)^2 = 9$ **6.** $(2x+1)^2 = 35$

7. WHAT IF? In Example 3, the volume of the tank is 315 cubic feet. Find the length and width of the tank.

Solve the equation using square roots.

4. $(x + 7)^2 = 0$ x = -7 **5.** $4(x - 3)^2 = 9$ **6.** $(2x + 1)^2 = 35$

7. WHAT IF? In Example 3, the volume of the tank is 315 cubic feet. Find the length and width of the tank.

Solve the equation using square roots.

4. $(x + 7)^2 = 0$ x = -7 **5.** $4(x - 3)^2 = 9$ **6.** $(2x + 1)^2 = 35$ x = 1.5, x = 4.5

7. WHAT IF? In Example 3, the volume of the tank is 315 cubic feet. Find the length and width of the tank.

Solve the equation using square roots.

- **4.** $(x + 7)^2 = 0$ x = -7 **5.** $4(x - 3)^2 = 9$ **6.** $(2x + 1)^2 = 35$ x = 1.5, x = 4.5 **6.** $x = \frac{-1 + \sqrt{35}}{2}, x = \frac{-1 - \sqrt{35}}{2}$
- 7. WHAT IF? In Example 3, the volume of the tank is 315 cubic feet. Find the length and width of the tank. width: about 5.9 ft; length: about 17.7 ft