

SOLVING QUADRATIC FUNCTIONS USING SQUARE ROOTS

In Section 6.1, you studied properties of square roots. Here you will use square roots to solve quadratic equations of the form $a x^{2}+c=0$.

In Section 6.1, you studied properties of square roots. Here you will use square roots to solve quadratic equations of the form $a x^{2}+c=0$.

Key Idea
Solving Quadratic Equations Using Square Roots
You can solve $x^{2}=d$ by taking the square root of each side.

In Section 6.1, you studied properties of square roots. Here you will use square roots to solve quadratic equations of the form $a x^{2}+c=0$.

Key Idea

Solving Quadratic Equations Using Square Roots

You can solve $x^{2}=d$ by taking the square root of each side.

- When $d>0, x^{2}=d$ has two real solutions, $x= \pm \sqrt{d}$.

In Section 6.1, you studied properties of square roots. Here you will use square roots to solve quadratic equations of the form $a x^{2}+c=0$.

Key Idea

Solving Quadratic Equations Using Square Roots

You can solve $x^{2}=d$ by taking the square root of each side.

- When $d>0, x^{2}=d$ has two real solutions, $x= \pm \sqrt{d}$.
- When $d=0, x^{2}=d$ has one real solution, $x=0$.

In Section 6.1, you studied properties of square roots. Here you will use square roots to solve quadratic equations of the form $a x^{2}+c=0$.

Key Idea

Solving Quadratic Equations Using Square Roots

You can solve $x^{2}=d$ by taking the square root of each side.

- When $d>0, x^{2}=d$ has two real solutions, $x= \pm \sqrt{d}$.
- When $d=0, x^{2}=d$ has one real solution, $x=0$.
- When $d<0, x^{2}=d$ has no real solutions.

EXAMPLE (1) Solving Quadratic Equations Using Square Roots

a. Solve $3 x^{2}-27=0$ using square roots.
b. Solve $x^{2}-10=-10$ using square roots.

EXAMPLE (I Solving Quadratic Equations Using Square Roots

a. Solve $3 x^{2}-27=0$ using square roots.

$$
3 x^{2}-27=0 \quad \text { Write the equation. }
$$

b. Solve $x^{2}-10=-10$ using square roots.

EXAMPLE (I Solving Quadratic Equations Using Square Roots

a. Solve $3 x^{2}-27=0$ using square roots.

$$
\begin{aligned}
3 x^{2}-27 & =0 \\
3 x^{2} & =27
\end{aligned}
$$

Write the equation.
Add 27 to each side.
b. Solve $x^{2}-10=-10$ using square roots.

EXAMPLE (I Solving Quadratic Equations Using Square Roots

a. Solve $3 x^{2}-27=0$ using square roots.

$$
\begin{aligned}
3 x^{2}-27 & =0 \\
3 x^{2} & =27 \\
x^{2} & =9
\end{aligned}
$$

Write the equation.
Add 27 to each side.
Divide each side by 3 .
b. Solve $x^{2}-10=-10$ using square roots.

EXAMPLE Solving Quadratic Equations Using Square Roots

a. Solve $3 x^{2}-27=0$ using square roots.

$$
\begin{aligned}
3 x^{2}-27 & =0 \\
3 x^{2} & =27 \\
x^{2} & =9 \\
x & = \pm \sqrt{9}
\end{aligned}
$$

Write the equation.
Add 27 to each side.
Divide each side by 3 .
Take the square root of each side.
b. Solve $x^{2}-10=-10$ using square roots.

EXAMPLE Solving Quadratic Equations Using Square Roots

a. Solve $3 x^{2}-27=0$ using square roots.

$$
\begin{aligned}
3 x^{2}-27 & =0 \\
3 x^{2} & =27 \\
x^{2} & =9 \\
x & = \pm \sqrt{9} \\
x & = \pm 3
\end{aligned}
$$

Write the equation.
Add 27 to each side.
Divide each side by 3 .
Take the square root of each side.
Simplify.
b. Solve $x^{2}-10=-10$ using square roots.

EXAMPLE 1 Solving Quadratic Equations Using Square Roots

a. Solve $3 x^{2}-27=0$ using square roots.

$$
\begin{aligned}
3 x^{2}-27 & =0 \\
3 x^{2} & =27 \\
x^{2} & =9 \\
x & = \pm \sqrt{9} \\
x & = \pm 3
\end{aligned}
$$

Write the equation.
Add 27 to each side.
Divide each side by 3 .
Take the square root of each side.
Simplify.
The solutions are $x=3$ and $x=-3$.
b. Solve $x^{2}-10=-10$ using square roots.

EXAMPLE Solving Quadratic Equations Using Square Roots

a. Solve $3 x^{2}-27=0$ using square roots.

$$
\begin{aligned}
3 x^{2}-27 & =0 \\
3 x^{2} & =27 \\
x^{2} & =9 \\
x & = \pm \sqrt{9} \\
x & = \pm 3
\end{aligned}
$$

Write the equation.
Add 27 to each side.
Divide each side by 3 .
Take the square root of each side.
Simplify.
The solutions are $x=3$ and $x=-3$.
b. Solve $x^{2}-10=\mathbf{- 1 0}$ using square roots.

$$
x^{2}-10=-10
$$

Write the equation.

EXAMPLE Solving Quadratic Equations Using Square Roots

a. Solve $3 x^{2}-27=0$ using square roots.

$$
\begin{aligned}
3 x^{2}-27 & =0 \\
3 x^{2} & =27 \\
x^{2} & =9 \\
x & = \pm \sqrt{9}
\end{aligned}
$$

$$
x= \pm 3 \quad \text { Simplify. }
$$

The solutions are $x=3$ and $x=-3$.
b. Solve $x^{2}-10=\mathbf{- 1 0}$ using square roots.

$$
\begin{aligned}
x^{2}-10 & =-10 \\
x^{2} & =0
\end{aligned}
$$

Write the equation.
Add 10 to each side.

EXAMPLE 1 Solving Quadratic Equations Using Square Roots

a. Solve $3 x^{2}-27=0$ using square roots.

$$
\begin{aligned}
3 x^{2}-27 & =0 & & \text { Write the equation. } \\
3 x^{2} & =27 & & \text { Add } 27 \text { to each side. } \\
x^{2} & =9 & & \text { Divide each side by } 3 . \\
x & = \pm \sqrt{9} & & \text { Take the square root of each side. } \\
x & = \pm 3 & & \text { Simplify. }
\end{aligned}
$$

The solutions are $x=3$ and $x=-3$.
b. Solve $x^{2}-10=\mathbf{- 1 0}$ using square roots.

$$
\begin{array}{rlr}
x^{2}-10 & =-10 & \text { Write the equation. } \\
x^{2}=0 & & \text { Add } 10 \text { to each side. } \\
x & =0 & \text { Take the square root of each side. } \\
& \text { The only solution is } x= & =0 .
\end{array}
$$

c. Solve $-5 x^{2}+11=16$ using square roots.
c. Solve $-5 x^{2}+11=16$ using square roots.

$$
-5 x^{2}+11=16 \quad \text { Write the equation. }
$$

c. Solve $-5 x^{2}+11=16$ using square roots.

$$
\begin{aligned}
-5 x^{2}+11 & =16 & & \text { Write the equation. } \\
-5 x^{2} & =5 & & \text { Subtract } 11 \text { from each side. }
\end{aligned}
$$

EXAMPLE I Solving Quadratic Equations Using Square Roots

c. Solve $-5 x^{2}+11=16$ using square roots.

$$
\begin{aligned}
-5 x^{2}+11 & =16 & & \text { Write the equation. } \\
-5 x^{2} & =5 & & \text { Subtract } 11 \text { from each side. } \\
x^{2} & =-1 & & \text { Divide each side by }-5 .
\end{aligned}
$$

The equation has no real solutions.

The square of a real number cannot be negative.
That is why the equation in part c has no real solutions.

On Your Own

Solve the equation using square roots.

1. $-3 x^{2}=-75$
2. $x^{2}+12=10$
3. $4 x^{2}-15=-15$

On Your Own

Solve the equation using square roots.

1. $-3 x^{2}=-75$
2. $x^{2}+12=10$
3. $4 x^{2}-15=-15$

$$
x=5, x=-5
$$

On Your Own

Solve the equation using square roots.

1. $-3 x^{2}=-75$
2. $x^{2}+12=10$
3. $4 x^{2}-15=-15$
$x=5, x=-5$
no real solutions

On Your Own

Solve the equation using square roots.

1. $-3 x^{2}=-75$
2. $x^{2}+12=10$
3. $4 x^{2}-15=-15$
no real solutions

$$
x=0
$$

EXAMPLE 2 Solving a Quadratic Equation Using Square Roots

a. Solve $(x-1)^{2}=\mathbf{2 5}$ using square roots.
b. Solve $9(x-2)^{2}=25$ using square roots.

EXAMPLE 2 Solving a Quadratic Equation Using Square Roots

a. Solve $(x-1)^{2}=\mathbf{2 5}$ using square roots.

$$
(x-1)^{2}=25 \quad \text { Write the equation. }
$$

b. Solve $9(x-2)^{2}=25$ using square roots.

EXAMPLE Solving a Quadratic Equation Using Square Roots

a. Solve $(x-1)^{2}=\mathbf{2 5}$ using square roots.

$$
\begin{aligned}
(x-1)^{2} & =25 & & \text { Write the equation. } \\
x-1 & = \pm 5 & & \text { Take the square root of each side. }
\end{aligned}
$$

b. Solve $9(x-2)^{2}=25$ using square roots.

EXAMPLE 2 Solving a Quadratic Equation Using Square Roots

a. Solve $(x-1)^{2}=\mathbf{2 5}$ using square roots.

$$
\begin{aligned}
(x-1)^{2} & =25 & & \text { Write the equation. } \\
x-1 & = \pm 5 & & \text { Take the square root of each side. } \\
x & =1 \pm 5 & & \text { Add } 1 \text { to each side. }
\end{aligned}
$$

So, the solutions are $x=1+5=6$ and $x=1-5=-4$.
b. Solve $9(x-2)^{2}=25$ using square roots.

$$
\begin{array}{cl}
9(x-2)^{2}=25 & \text { Write the equation. } \\
(x-2)^{2}=\frac{25}{9} & \text { Divide both sides by } 9 \\
x-2= \pm \frac{5}{3} & \text { Take the square root of each side. } \\
x=2 \pm \frac{5}{3} & \text { Add } 2 \text { to each side. }
\end{array}
$$

So, the solutions are $x=2+\frac{5}{3}=3 \frac{2}{3}$ or $x=2-\frac{5}{3}=\frac{1}{3}$

EXAMPLE 3 Real-Life Application

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

EXAMPLE 3 Real-Life Application

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

The length ℓ is 3 times the width w, so $\ell=3 w$. Write an equation using the formula for the volume of a rectangular prism.

EXAMPLE 3 Real-Life Application

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

The length ℓ is 3 times the width w, so $\ell=3 w$. Write an equation using the formula for the volume of a rectangular prism.

$$
V=\ell w h \quad \text { Write the formula. }
$$

example 3 Real-Life Application

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

The length ℓ is 3 times the width w, so $\ell=3 w$. Write an equation using the formula for the volume of a rectangular prism.

$$
\begin{aligned}
V & =\ell w h & & \text { Write the formula. } \\
270 & =3 w(w)(3) & & \text { Substitute } 270 \text { for } V, 3 w \text { for } \ell, \text { and } 3 \text { for } h .
\end{aligned}
$$

EXAMPLE 3 Real-Life Application

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

The length ℓ is 3 times the width w, so $\ell=3 w$. Write an equation using the formula for the volume of a rectangular prism.

$$
\begin{aligned}
V & =\ell w h & & \text { Write the formula. } \\
270 & =3 w(w)(3) & & \text { Substitute } 270 \text { for } V, 3 w \text { for } \ell, \text { and } 3 \text { for } h . \\
270 & =9 w^{2} & & \text { Multiply. }
\end{aligned}
$$

example 3 Real-Life Application

A touch tank has a height of 3 feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

The length ℓ is 3 times the width w, so $\ell=3 w$. Write an equation using the formula for the volume of a rectangular prism.

$$
\begin{aligned}
V & =\ell w h & & \text { Write the formula. } \\
270 & =3 w(w)(3) & & \text { Substitute } 270 \text { for } V, 3 w \text { for } \ell \text {, and } 3 \text { for } h . \\
270 & =9 w^{2} & & \text { Multiply. } \\
30 & =w^{2} & & \text { Divide each side by } 9 .
\end{aligned}
$$

EXAMPLE 3 Real-Life Application

A touch tank has a height of $\mathbf{3}$ feet. Its length is 3 times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

The length ℓ is 3 times the width w, so $\ell=3 w$. Write an equation using the formula for the volume of a rectangular prism.

$$
\begin{aligned}
V & =\ell w h \\
270 & =3 w(w)(3) \\
270 & =9 w^{2} \\
30 & =w^{2}
\end{aligned}
$$

Write the formula.
Substitute 270 for $V, 3 w$ for ℓ, and 3 for h.
Multiply.
Divide each side by 9 .
5.5 feet is a reasonable solution because $\sqrt{30}$ falls $\pm \sqrt{30}=w$

Take the square root of each side. between $\sqrt{25}$ and $\sqrt{36}$

Use the positive solution.
So, the width is $\sqrt{30} \approx 5.5$ feet and the length is $3 \sqrt{30} \approx 16.4$ feet.

On Your Own

Solve the equation using square roots.
4. $(x+7)^{2}=0$
5. $4(x-3)^{2}=9$
6. $(2 x+1)^{2}=35$
7. WHAT IF? In Example 3, the volume of the tank is 315 cubic feet. Find the length and width of the tank.

On Your Own

Solve the equation using square roots.
4. $(x+7)^{2}=0$
5. $4(x-3)^{2}=9$
6. $(2 x+1)^{2}=35$
$x=-7$
7. WHAT IF? In Example 3, the volume of the tank is 315 cubic feet. Find the length and width of the tank.

On Your Own

Solve the equation using square roots.
4. $(x+7)^{2}=0$
5. $4(x-3)^{2}=9$
6. $(2 x+1)^{2}=35$
$x=-7$

$$
x=1.5, x=4.5
$$

7. WHAT IF? In Example 3, the volume of the tank is 315 cubic feet. Find the length and width of the tank.

On Your Own

Solve the equation using square roots.
4. $(x+7)^{2}=0$
5. $4(x-3)^{2}=9$
6. $(2 x+1)^{2}=35$
$x=-7$
$x=1.5, x=4.5$

$$
\begin{aligned}
& x=\frac{-1+\sqrt{35}}{2} \\
& x=\frac{-1-\sqrt{35}}{2}
\end{aligned}
$$

7. WHAT IF? In Example 3, the volume of the tank is 315 cubic feet. Find the length and width of the tank.
width: about 5.9 ft ;
length: about 17.7 ft
