Chapter 9

Fair Game Review

1. –6	2. 11	3. $\frac{2}{7}$	4. ±1.5	
5. 3 ft	6. 0.5 m	7 . 2√5	8 . 3√7	
9. 6√3	10. 12~	√ <u>2</u> 11	1. $5\sqrt{5}$ ft	
12. 8√3 m	13. (<i>y</i> -	- 3) ² 14	$(b + 9)^2$	
15. $(n + 14)^2$		16. (<i>h</i> – 8)	$)^{2}$	
17. a. $(x - 25)$ in. b. $4(x - 25)$ in.				

SOLVING QUADRATIC FUNCTIONS BY GRAPHING

Lesson 9.1

In Chapter 7, you solved quadratic equations by factoring. You can also solve quadratic equations in standard form by finding the *x*-intercept(s) of the graph of the related function $y = ax^2 + bx + c$.

The *x*-intercepts (when y = 0) of a quadratic function are the solutions to the related quadratic equation, also referred to as **roots** or **zeros**.

Quadratic equations may have two real solutions, one real solution, or no real solutions.

EXAMPLE Solving a Quadratic Equation: Two Real Solutions

Solve $x^2 + 2x - 3 = 0$ by graphing.

Step 1: Find the vertex. Use $-\frac{b}{2a}$ to find the *x*-coordinate. $-\frac{2}{2(1)} = -1$

Step 2: Substitute *x*-coordinate, to find the *y*-coordinate.

$$(-1)^2 + 2(-1) - 3$$

= 1 - 2 - 3
= -4

Step 3: Plot vertex. (-1, -4)

Step 4: Find *x*-intercepts. (x+3)(x-1) = 0x = -3 or x = 1

So, the solutions are x = -3 and x = 1.

Solve $x^2 - 8x = -16$ by graphing.

Step 1: Rewrite the equation in standard form.

$$x^2 - 8x + 16 = 0$$

Step 2: Find the vertex. Use $-\frac{b}{2a}$ to find the *x*-coordinate. $-\frac{(-8)}{2(1)} = \frac{8}{2} = 4$

Solving a Quadratic Equation: One Real Solution

Step 3: Substitute *x*-coordinate, to find the *y*-coordinate.

$$(4)^2 - 8(4) + 16$$

= 16 - 32 + 16
- 0

Step 4: Plot vertex: (4, 0)

Step 5: Find *x*-intercepts.

$$(x-4)(x-4)=0$$

x = 4

EXAMPLE

2

The only *x*-intercept is at the vertex (4, 0).

So, the solution is x = 4.

EXAMPLE 3 Solving a Quadratic Equation: No Real Solutions

Solve $-x^2 = 4x + 5$ by graphing.

Step 1: Rewrite the equation in standard form.

 $y = x^{2} + 4x + 5$ Step 2: Find the vertex. Use $-\frac{b}{2a}$ to find the *x*-coordinate. $-\frac{4}{2(1)} = -\frac{4}{2} = -2$ Step 3: Substitute *x*-coordinate, to find the *y*-coordinate. $(-2)^{2} + 4(-2) + 5$ = 4 - 8 + 5

Step 4: Plot vertex: (-2, 1)

= 1

The vertex is above the *x*-axis, and since a > 0, the parabola will open up and never intersect the *x*-axis. So, $-x^2 = 4x + 5$ has no real solutions.

Solve the equations by graphing or factoring.

1.
$$x^2 - x - 2 = 0$$
 2. $x^2 + 7x + 10 = 0$ **3.** $x^2 + x = 12$

4.
$$x^2 + 1 = 2x$$
 5. $x^2 + 4x = 0$ **6.** $x^2 + 10x = -25$

7.
$$x^2 = 3x - 3$$
 8. $x^2 + 7x = -6$

r = -1 r = 2

Solve the equations by graphing or factoring.

1. $x^2 - x - 2 = 0$ **2.** $x^2 + 7x + 10 = 0$ **3.** $x^2 + x = 12$

4.
$$x^2 + 1 = 2x$$

5. $x^2 + 4x = 0$
6. $x^2 + 10x = -25$

7.
$$x^2 = 3x - 3$$
 8. $x^2 + 7x = -6$

Solve the equations by graphing or factoring.

1. $x^2 - x - 2 = 0$ **2.** $x^2 + 7x + 10 = 0$ **3.** $x^2 + x = 12$

x = -1, x = 2 x = -5, x = -24. $x^2 + 1 = 2x$ 5. $x^2 + 4x = 0$ 6. $x^2 + 10x = -25$

Solve the equations by graphing or factoring.

1. $x^2 - x - 2 = 0$ **2.** $x^2 + 7x + 10 = 0$ **3.** $x^2 + x = 12$

x = -1, x = 2 x = -5, x = -2 x = -4, x = 3

4.
$$x^2 + 1 = 2x$$
 5. $x^2 + 4x = 0$ **6.** $x^2 + 10x = -25$

7.
$$x^2 = 3x - 3$$
 8. $x^2 + 7x = -6$

Solve the equations by graphing or factoring.

1. $x^2 - x - 2 = 0$ **2.** $x^2 + 7x + 10 = 0$ **3.** $x^2 + x = 12$

x = -1, x = 2 x = -5, x = -2 x = -4, x = 3 **4.** $x^2 + 1 = 2x$ **5.** $x^2 + 4x = 0$ **6.** $x^2 + 10x = -25$

x = 1

Solve the equations by graphing or factoring.

1. $x^2 - x - 2 = 0$ **2.** $x^2 + 7x + 10 = 0$ **3.** $x^2 + x = 12$

x = -1, $x = 2$	x = -5, x = -2	x = -4, x = 3
4. $x^2 + 1 = 2x$	5. $x^2 + 4x = 0$	6. $x^2 + 10x = -25$
x = 1	x = -4, x = 0	

Solve the equations by graphing or factoring.

1. $x^2 - x - 2 = 0$ **2.** $x^2 + 7x + 10 = 0$ **3.** $x^2 + x = 12$

x = -1, x = 2	x = -5, x = -2	x = -4, x = 3
4. $x^2 + 1 = 2x$	5. $x^2 + 4x = 0$	6. $x^2 + 10x = -25$
x = 1	x = -4, x = 0	x = -5

Solve the equations by graphing or factoring.

1.
$$x^2 - x - 2 = 0$$
 2. $x^2 + 7x + 10 = 0$
 3. $x^2 + x = 12$
 $x = -1, x = 2$
 $x = -5, x = -2$
 $x = -4, x = 3$

 4. $x^2 + 1 = 2x$
 5. $x^2 + 4x = 0$
 6. $x^2 + 10x = -25$
 $x = 1$
 $x = -4, x = 0$
 $x = -5$

7.
$$x^2 = 3x - 3$$

8. $x^2 + 7x = -6$
no real solutions

Solve the equations by graphing or factoring.

1.
$$x^{2} - x - 2 = 0$$

 $x = -1, x = 2$
4. $x^{2} + 1 = 2x$
 $x = 1$
7. $x^{2} = 3x - 3$
no real solutions
2. $x^{2} + 7x + 10 = 0$
 $x = -5$
3. $x^{2} + x = 12$
 $x = -4, x = 0$
5. $x^{2} + 7x = -6$
 $x = -4, x = -1$
5. $x^{2} + 7x = -6$
 $x = -6, x = -1$

EXAMPLE 4 Real-Life Application

A football player kicks a football 2 feet above the ground with an upward velocity of 75 feet per second. The function $h = -16t^2 + 75t + 2$ gives the height *h* (in feet) of the football after *t* seconds. After how many seconds is the football 50 feet above the ground?

To determine when the football is 50 feet above the ground, find the *t*-values for which h = 50. So, solve the equation $-16t^2 + 75t + 2 = 50$.

Step 1: Rewrite the equation in standard form.

 $-16t^2 + 75t - 48 = 0$

Step 2: Use a graphing calculator or go to desmos.com to graph the related function.

The graph shows the height of the object over time, not the path of the object

Homework

Textbook pages: 459 - 461: 4-8, 9-33 mod 3, 41, 48-50