Choosing a Solution Method

Extension 9.4

Methods for Solving $a x^{2}+b x+c=0$

Factoring (Lessons 7.6-7.9)---an efficient way to solve IF the equation is easily factored, which isn't always the case.

Graphing (Lesson 9.1)---can be used for any quadratic, but may give only approximate solutions.

Find the Square Root (Lesson 9.2)---an efficient way to solve $x^{2}=d$

Completing the Square (Lesson 9.3)---can be used for any quadratic, but easiest when " a " is 1 and " b " is an even number.

Quadratic Formula (Lesson 9.4)---useful for any quadratic; gives exact solutions.

Which sown
 DPpuci.ce

Round to the nearest tenth if necessary.

Choose a method and solve the quadratic equation.

$$
\begin{aligned}
& \text { 1) } x^{2}+6 x=7 \\
& x^{2}+6 x-7=0 \\
& (x+7)(x-1)=0 \\
& x=-7 \quad x=1
\end{aligned}
$$

Choose a method and solve the quadratic equation.

$$
\text { 2) } \begin{aligned}
& x^{2}+4 x-1=0 \\
& x^{2}+4 x+\ldots=1 \\
& x^{2}+4 x+4=1+4 \\
&(\text { (half of 4) }
\end{aligned}
$$

Choose a method and solve the quadratic equation.

$$
\text { 3) } \begin{aligned}
3 x^{2}-12 & =0 \\
3 x^{2} & =12 \\
x^{2} & =4 \\
\sqrt{x^{2}} & = \pm \sqrt{4} \\
x & = \pm 2
\end{aligned}
$$

Choose a method and solve the quadratic equation.
4) $3 x^{2}-2 x-8=0$

$$
(3 x+4)(x-2)=0
$$

$$
x=-\frac{4}{3} \quad x=2
$$

Choose a method and solve the quadratic equation.

$$
\text { 5) } \left.\begin{array}{rl}
x^{2}+6 x-4 & =0 \\
x^{2}+6 x+\ldots & =4 \\
x^{2}+6 x+9 & =4+9 \\
\underbrace{(h a l f ~ o f ~ 6) ~}
\end{array}\right)=\begin{aligned}
x^{2}+6 x+9 & =13 \\
(x+3)^{2} & =13 \\
\sqrt{(x+3)^{2}} & = \pm \sqrt{13} \\
x+3 & = \pm \sqrt{13} \\
x & =-3 \pm \sqrt{13}
\end{aligned}
$$

$$
0.6,-6.6
$$

Choose a method and solve the quadratic equation.

6) $x^{2}+x-5=0 \quad x^{2}+x+\frac{1}{4}=5+\frac{1}{4}$
$x=\frac{-(1) \pm \sqrt{(1)^{2}-4(1)(-5)}}{2(1)}$
$x=-\frac{1 \pm \sqrt{21}}{2}$
$-2.8,1.8$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
x equals negative b, plus or minus square root b squared minus 4ac, all over 2a."

$$
\begin{aligned}
x^{2}+x+\frac{1}{4} & =\frac{20}{4}+\frac{1}{4} \\
\left(x+\frac{1}{2}\right)^{2} & =\frac{21}{4} \\
\sqrt{\left(x+\frac{1}{2}\right)^{2}} & = \pm \sqrt{\frac{21}{4}} \\
x+\frac{1}{2} & = \pm \frac{\sqrt{21}}{2} \\
x & =-\frac{1}{2} \pm \frac{\sqrt{21}}{2} \\
x & =-\frac{1 \pm \sqrt{21}}{2} \\
& -2.8,1.8
\end{aligned}
$$

Choose a method and solve the quadratic equation.

$$
\text { 7) } \begin{aligned}
x^{2}-12 x+20 & =0 \\
(x-10)(x-2) & =0 \\
x=10 \quad x & =2
\end{aligned}
$$

Choose a method and solve the quadratic equation.

$$
\text { 8) } \begin{gathered}
6 x^{2}+12 x=0 \\
6 x(x+2)=0 \\
6 x=0 \quad x+2=0 \\
x=0 \quad x=-2
\end{gathered}
$$

Choose a method and solve the quadratic equation.

$$
\text { 9) } \begin{aligned}
& x^{2}-10 x-23=0 \\
& x^{2}-10 x+\ldots=23 \\
& x^{2}-10 x+25=23+25 \\
& \underbrace{(\text { half of }-10)^{2}} \\
& x^{2}-10 x+25=48 \\
&(x-5)^{2}=48 \\
& \sqrt{(x-5)^{2}}= \pm \sqrt{48} \\
& x-5= \pm \sqrt{48} \\
& x=5 \pm \sqrt{48} \\
& 11.9,-1.9
\end{aligned}
$$

Choose a method and solve the quadratic equation.

$$
\text { 10) } \begin{aligned}
x^{2}+9 x+20 & =0 \\
(x+5)(x+4) & =0 \\
x=-5 \quad x & =-4
\end{aligned}
$$

Choose a method and solve the quadratic equation.

$$
\text { 11) } \begin{aligned}
2 x^{2}+15 x-8 & =0 \\
(x+8)(2 x-1) & =0 \\
x=-8 \quad x & =\frac{1}{2}
\end{aligned}
$$

Choose a method and solve the quadratic equation.

$$
\text { 12) } \begin{gathered}
5 x^{2}+20 x=0 \\
5 x(x+4)=0 \\
5 x=0 \quad x+4=0 \\
x=0 \quad x=-4
\end{gathered}
$$

Choose a method and solve the quadratic equation.

$$
\text { 13) } \begin{aligned}
& x^{2}-4 x=14 \\
& x^{2}-4 x+\ldots=14 \\
& x^{2}-4 x+4=14+4 \\
& \underbrace{}_{(\text {half of }-4)^{2}} \\
& x^{2}-4 x+4=18 \\
&(x-2)^{2}=18 \\
& \sqrt{(x-2)^{2}}= \pm \sqrt{18} \\
& x-2= \pm \sqrt{18} \\
& x=2 \pm \sqrt{18} \\
& 6.2,-2.2
\end{aligned}
$$

Choose a method and solve the quadratic equation.
14) $x^{2}+14 x=15$
$x^{2}+14 x-15=0$
$(x+15)(x-1)=0$
$x=-15 \quad x=1$

Choose a method and solve the quadratic equation.
15) $x^{2}-8 x-4=0$

$$
x^{2}-8 x+\ldots=4
$$

$$
\begin{aligned}
x^{2}-\underbrace{8 x+16}_{\text {(half of }-8)^{2}} & =4+ \\
x^{2}-8 x+16 & =20
\end{aligned}
$$

$$
(x-4)^{2}=20
$$

$$
\sqrt{(x-4)^{2}}= \pm \sqrt{20}
$$

$$
x-4= \pm \sqrt{20}
$$

$$
x=4 \pm \sqrt{20}
$$

$$
8.5,-0.5
$$

To solve a quadratic by "Completing the Square", follow these steps:

1. Make sure the coefficient of x^{2} is 1 .
2. Move everything to the LEFT side of the equation EXCEPT the constant.
3. Make the left hand side of the equation into a PERFECT SQUARE TRINOMIAL.
4. Remember, if you add a number to one side of an equation, you must add the same number to the other side of the equation.
5. Factor the left side into the SQUARE OF A BINOMIAL.
6. Take the square root of each side. Remember to add the \pm symbol to the right side.
7. Solve for x.
