Comparing Graphs of Functions Lesson 8.5 Extension

You are already familiar with the concept of "average rate of change".
When working with straight lines (linear functions) you saw the "average rate of change" to be:

$$
\text { average rate of change }=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}=m=S L O P E
$$

A special circumstance exists when working with straight lines (linear functions), in that the "average rate of change" (the slope) is constant. No matter where you check the slope on a straight line, you will get the same answer.

- Non-Linear Functions:

When working with non-linear functions, the "average rate of change" is not constant.

The process of computing the "average rate of change", however, remains the same as was used with straight lines: two points are chosen, and $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ or $\frac{\text { rise }}{\text { run }}$ is computed.

When you find the "average rate of change" you are finding the rate at which (how fast) the function's y-values (output) are changing as compared to the function's x-values (input).

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { becomes } \quad \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Example 1: Finding average rate of change from a table.

Function $f(x)$ is shown in the table at the right.
Find the average rate of change over the interval $1 \leq x \leq 3$.
If the interval is $1 \leq x \leq 3$,then you are examining the points $(1,4)$ and $(3,16)$.
Substitute into the formula: $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$

x	$f(x)$
0	1
1	4
2	9
3	16

$$
\begin{aligned}
& =\frac{16-4}{3-1} \\
& =\frac{12}{2} \\
& =\frac{6}{1}
\end{aligned}
$$

The average rate of change is 6 over 1 , or just 6 .
The y-values change 6 units every time the x-values change 1 unit, on this interval.

Example 2: Finding average rate of change from a graph.

Function $g(x)$ is shown in the graph at the right. Find the average rate of change over the interval $1 \leq x \leq 4$.

If the interval is $1 \leq x \leq 4$,then you are examining the points $(1,1)$ and $(4,2)$.

Substitute into the formula: $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{2-1}{4-1} \\
& =\frac{1}{3}
\end{aligned}
$$

The average rate of change is 1 over 3 , or just $1 / 3$. The y-values change 1 unit every time the x-values change 3 units, on this interval.

Example 3

Finding the average rate of change for the function below between

$$
x=1 \text { and } x=2 \text {. }
$$

$$
\begin{aligned}
& g(x)=(x-3)^{2}-2 \\
& g(1)=(1-3)^{2}-2 \\
& g(1)=(-2)^{2}-2 \\
& g(1)=4-2 \\
& g(1)=2 \\
& (1,2) \\
& g(2)=(2-3)^{2}-2 \\
& g(2)=(-1)^{2}-2 \\
& g(2)=1-2 \\
& g(2)=-1 \\
& (2,-1)
\end{aligned}
$$

$$
\text { Substitute into the formula: } \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

$$
\text { The average rate of change between } x=1 \text { and } x=2 \text { is }-3 \text {. }
$$

Finding the average rate of change from a table.
Function $f(x)$ is shown in the table at the right. Find the average rate of change over the interval $0.5 \leq x \leq 2$.

Substitute into the formula: $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{0-12}{2-0.5} \\
& =\frac{-12}{1.5} \\
& =-8
\end{aligned}
$$

The average rate of change is -8 over 1 , or just -8 .
The y-values change -8 units every time the x-values change 1 unit on this interval.

Consider the quadratic function whose graph is shown.

The average rate of change is -2 , and we can see that the function values for the quadratic function, $y=f(x)$ are decreasing on the interval from $x=1$ to $x=3$.

Calculate the average rate of change for the function $f(x)=x^{2}+6 x+9$ between $x=1$ and $x=3$.

$$
\begin{aligned}
& f(x)=x^{2}+6 x+9 \\
& f(3)=(3)^{2}+6(3)+9 \\
& f(3)=36 \\
& (3,36) \\
& f(x)=x^{2}+6 x+9 \\
& f(1)=(1)^{2}+6(1)+9 \\
& f(1)=16 \\
& (1,16)
\end{aligned}
$$

$$
\text { Substitute into the formula: } \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

$$
\begin{aligned}
& =\frac{16-36}{1-3} \\
& =\frac{-20}{-2} \\
& =10
\end{aligned}
$$

The average rate of change of $f(x)=x^{2}+6 x+9$ between $x=1$ and $x=3$ is 10 .

Homework

Practice 2.2.3

Identifying the Average Rate of Change

