## Comparing Graphs of Functions Lesson 8.5 Extension

#### Linear Functions:

You are already familiar with the concept of "average rate of change". When working with **straight lines** (*linear functions*) you saw the "average rate of change" to be:

average rate of change = 
$$\frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = m = \frac{SLOPE}{\Delta x}$$



A special circumstance exists when working with straight lines (*linear functions*), in that the "average rate of change" (the slope) is constant. No matter where you check the slope on a straight line, you will get the same answer.

#### Non-Linear Functions:

When working with *non-linear functions*, the "average rate of change" is not constant.

The process of computing the "average rate of change", however, remains the same as was used with straight lines: two points are chosen, and  $v_{1} - v_{2}$  rise

 $\frac{y_2 - y_1}{x_2 - x_1}$  or  $\frac{\text{rise}}{\text{run}}$  is computed.



When you find the "average rate of change" you are finding the rate at which (how fast) the function's *y*-values (output) are changing as compared to the function's *x*-values (input).

$$m = \frac{y_2 - y_1}{x_2 - x_1} \quad becomes \quad \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

### **Example 1**: Finding average rate of change from a table.

Function f(x) is shown in the table at the right. Find the average rate of change over the interval  $1 \le x \le 3$ .

If the interval is  $1 \le x \le 3$ , then you are examining the points (1,4) and (3,16).

Substitute into the formula:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{16 - 4}{3 - 1} = \frac{12}{2} = \frac{6}{1}$$

 $\begin{array}{c|cc}
x & f(x) \\
0 & 1 \\
1 & 4 \\
2 & 9 \\
3 & 16 \\
\end{array}$ 

The average rate of change is 6 over 1, or just 6. The *y*-values change 6 units every time the *x*-values change 1 unit, on this interval.

#### Example 2: Finding average rate of change from a graph.

Function g(x) is shown in the graph at the right. Find the average rate of change over the interval  $1 \le x \le 4$ .

If the interval is  $1 \le x \le 4$ , then you are examining the points (1,1) and (4,2).

Substitute into the formula:

 $\frac{f(x_2) - f(x_1)}{x_2 - x_1}$ 

$$=\frac{2-1}{4-1}$$
$$=\frac{1}{3}$$



The average rate of change is 1 over 3, or just 1/3.

The y-values change 1 unit every time the x-values change 3 units, on this interval.

| Example 3           | Finding the average rate of change for the function below between   |
|---------------------|---------------------------------------------------------------------|
|                     | $x = 1 \ and \ x = 2.$                                              |
| $g(x) = (x-3)^2$    | $-2$ $f(x_0) - f(x_1)$                                              |
| $g(1) = (1-3)^2$    | -2 Substitute into the formula: $\frac{y + 2y + y + 1y}{x_2 - x_1}$ |
| $g(1) = (-2)^2 - 2$ | -1 - 2                                                              |
| g(1) = 4 - 2        | $=\frac{1}{2-1}$                                                    |
| g(1) = 2            | -3                                                                  |
| (1,2)               | $=\frac{1}{1}$                                                      |
| $g(2) = (2-3)^2$    | -2                                                                  |
| $g(2) = (-1)^2 - 2$ | The average rate of change between $x = 1$ and $x = 2$ is $-3$ .    |

g(2) = 1 - 2

g(2) = -1

(2, -1)

The average rate of change between x = 1 and x = 2 is -3.

Finding the average rate of change from a table.

Function f(x) is shown in the table at the right. Find the average rate of change over the interval  $0.5 \le x \le 2$ .

| $5 \le x \le 2.$                    | Time (seconds) | Ball height (feet) |
|-------------------------------------|----------------|--------------------|
| f(x) - f(x)                         | 0              | 0                  |
| $\frac{f(x_2) - f(x_1)}{x_2 - x_1}$ | 0.5            | 12                 |
|                                     | 1              | 16                 |
|                                     | 1.5            | 12                 |
|                                     | 2              | 0                  |

X

f(x)

Substitute into the formula:



= -8

The average rate of change is -8 over 1, or just -8.

The y-values change -8 units every time the x-values change 1 unit on this interval.

Consider the quadratic function whose graph is shown.



The average rate of change is -2, and we can see that the function values for the quadratic function, y = f(x) are decreasing on the interval from x = 1 to x = 3.

Calculate the average rate of change for the function  $f(x) = x^2 + 6x + 9$  between x = 1 and x = 3.

| $f(x) = x^2 + 6x + 9$     |                                                                    | $f(x_{0}) - f(x_{0})$               |
|---------------------------|--------------------------------------------------------------------|-------------------------------------|
| $f(3) = (3)^2 + 6(3) + 9$ | Substitute into the formula:                                       | $\frac{y(x_2) - y(x_1)}{x_2 - x_1}$ |
| f(3) = 36                 |                                                                    | 16 - 36                             |
| (3,36)                    | =                                                                  | $=\frac{10^{-30}}{1-3}$             |
| $f(x) = x^2 + 6x + 9$     | =                                                                  | $=\frac{-20}{-2}$                   |
| $f(1) = (1)^2 + 6(1) + 9$ | =                                                                  | = 10                                |
| <i>f</i> (1) = 16         |                                                                    |                                     |
| (1,16)                    | The average rate of change of $f(x) = x^2 + 6x$ and $x = 3$ is 10. | + 9 between $x = 1$                 |

# Homework

## Practice 2.2.3 Identifying the Average Rate of Change