Comparing Linear, Exponential, and Quadratic Functions

Lesson 8.5

Identifying from a graph:

Quadratic

Makes a U or \cap

$$
y=a x^{2}+b x+c
$$

On Your Own

Plot the points. Tell whether the points represent a linear, an exponential, or a quadratic function.

1. $(-1,5),(2,-1),(0,-1),(3,5),(1,-3)$

Quadratic

2. $(-1,2),(-2,8),(-3,32),\left(0, \frac{1}{2}\right),\left(1, \frac{1}{8}\right)$

Exponential
3. $(-3,5),(0,-1),(2,-5),(-4,7),(1,-3)$

Linear

Differences and Ratios of Functions

Linear Function: $y=2 x+5$

The y-values have a common difference of 2 .

Exponential Function: $y=4(2)^{x}$

The y-values have a common ratio of 2 .

Quadratic Function: $y=x^{2}+2 x-1$

For quadratic functions, the second differences are constant.

Tell whether the table of values represents a linear, an exponential, or a quadratic function.
a.

The y-values have a common difference of -3 . So, the table represents a linear function.
b.

The second differences are constant. So, the table represents a quadratic function.

Identifying and Writing a Function

Tell whether the table of values represents a linear, an exponential, or a quadratic function. Then write an equation for the function using the form $y=m x+b, y=a b^{x}$, or $y=a x^{2}$.

Use the form $y=a x^{2}$.

$$
\begin{aligned}
& 1=a(2)^{2} \quad \text { Use the point }(2,1) . \text { Substitute } 2 \text { for } x \text { and } 1 \text { for } y . \\
& \frac{1}{4}=a \quad \text { Solve for } a .
\end{aligned}
$$

So, an equation for the quadratic function is $y=\frac{1}{4} x^{2}$.

On Your Own Write an equation for a function

Tell whether the table of values represents a linear function, an exponential function, or a quadratic function. Then write an equation for the function.

x	-2	-1	0	1	2
y	2	0.5	0	0.5	2

On Your Own Write an equation for a function

SOLUTION

STEP 1 Determine which type of function the table of values represents.

x	-2	-1	0	1	2
y	2	0.5	0	0.5	2

First differences: -1.5
Second differences: 1
1
1

$$
y=\frac{1}{2} x^{2}
$$

Homework

TB pages 439-441: 4-18, 33, 34

