Comparing Linear, Exponential, and Quadratic Functions Lesson 8.5

Identifying from a graph:

Linear

Makes a straight line

Exponential

Rises or falls quickly in one direction

Quadratic

Makes a U or ∩

$$y = ax^2 + bx + c$$

On Your Own

Plot the points. Tell whether the points represent a *linear*, an *exponential*, or a *quadratic* function.

1.
$$(-1, 5), (2, -1), (0, -1), (3, 5), (1, -3)$$

Quadratic

2.
$$(-1, 2), (-2, 8), (-3, 32), \left(0, \frac{1}{2}\right), \left(1, \frac{1}{8}\right)$$

Exponential

3.
$$(-3, 5), (0, -1), (2, -5), (-4, 7), (1, -3)$$

Linear

Differences and Ratios of Functions

Linear Function: y = 2x + 5

+1 +1 +1 +1						
x	-2	-1	0	1	2	
У	1	3	5	7	9	
+2 +2 +2 +2						

The *y*-values have a common *difference* of 2.

Exponential Function: $y = 4(2)^x$

+1 +1 +1 +1						
х	-2	-1	0	1	2	
У	1	2	4	8	16	
$\times 2 \times 2 \times 2 \times 2$						

The *y*-values have a common *ratio* of 2.

Quadratic Function: $y = x^2 + 2x - 1$

For quadratic functions, the second differences are constant.

Tell whether the table of values represents a *linear*, an *exponential*, or a *quadratic* function.

a.

The *y*-values have a common difference of -3. So, the table represents a linear function.

b.

The second differences are constant. So, the table represents a quadratic function.

Identifying and Writing a Function

Tell whether the table of values represents a *linear*, an *exponential*, or a *quadratic* function. Then write an equation for the function using the form y = mx + b, $y = ab^x$, or $y = ax^2$.

The function is quadratic.

Use the form $y = ax^2$.

$$1 = a(2)^2$$
 Use the point (2, 1). Substitute 2 for x and 1 for y.

$$\frac{1}{4} = a$$
 Solve for a.

So, an equation for the quadratic function is $y = \frac{1}{4}x^2$.

Write an equation for a function

Tell whether the table of values represents a *linear* function, an exponential function, or a quadratic function. Then write an equation for the function.

\mathcal{X}	-2	-1	0	1	2
y	2	0.5	0	0.5	2

SOLUTION

STEP 1 Determine which type of function the table of values represents.

X	-2	-1	0	1	2
У	2	0.5	0	0.5	2

First differences: -1.5

-0.5 0.5 1

Second differences: 1

1 1 1 $y = \frac{1}{2}x^2$

Homework

TB pages 439 - 441: 4-18, 33, 34