Focus of a Parabola
 Lesson 8.2

Key Idea

The Focus of a Parabola

The focus of a parabola is a fixed point on the interior of a parabola that lies on the axis of symmetry. A parabola "wraps" around the focus.

For functions of the form $y=a x^{2}$, the focus is $\left(0, \frac{1}{4 a}\right)$.

EXAMPLE Finding the Focus of a Parabola

Graph $y=-\frac{1}{4} x^{2}$. Identify the focus.
Step 1: Make a table of values. Then graph.

\boldsymbol{x}	-4	-2	0	2	4
\boldsymbol{y}	-4	-1	0	-1	-4

Step 2: Identify the focus. The function is of the form $y=a x^{2}$, so $a=-\frac{1}{4}$.

$$
\begin{aligned}
\frac{1}{4 a} & =\frac{1}{4\left(-\frac{1}{4}\right)} \\
& =\frac{1}{-1}, \text { or }-1
\end{aligned}
$$

\therefore So, the focus of the function $y=-\frac{1}{4} x^{2}$ is $(0,-1)$.

EXAMPLE 2 Writing an Equation of a Parabola

Write an equation of the parabola with focus $(0,4)$ and vertex at the origin.
For $y=a x^{2}$, the focus is $\left(0, \frac{1}{4 a}\right)$. Use the given focus, $(0,4)$, to write an equation to find a.

EXAMPLE 2 Writing an Equation of a Parabola

Write an equation of the parabola with focus $(0,4)$ and vertex at the origin.
For $y=a x^{2}$, the focus is $\left(0, \frac{1}{4 a}\right)$. Use the given focus, $(0,4)$, to write an equation to find a.

$$
\frac{1}{4 a}=4 \quad \text { Equate the } y \text {-coordinates. }
$$

EXAMPLE 2 Writing an Equation of a Parabola

Write an equation of the parabola with focus $(0,4)$ and vertex at the origin.
For $y=a x^{2}$, the focus is $\left(0, \frac{1}{4 a}\right)$. Use the given focus, $(0,4)$, to write an equation to find a.

$$
\begin{aligned}
\frac{1}{4 a} & =4 & & \text { Equate the } y \text {-coordinates. } \\
1 & =16 a & & \text { Multiply each side by } 4 a .
\end{aligned}
$$

EXAMPLE 2 Writing an Equation of a Parabola

Write an equation of the parabola with focus $(0,4)$ and vertex at the origin.
For $y=a x^{2}$, the focus is $\left(0, \frac{1}{4 a}\right)$. Use the given focus, $(0,4)$, to write an equation to find a.

$$
\begin{aligned}
\frac{1}{4 a} & =4 & & \text { Equate the } y \text {-coordinates. } \\
1 & =16 a & & \text { Multiply each side by } 4 a . \\
\frac{1}{16} & =a & & \text { Divide each side by } 16 .
\end{aligned}
$$

EXAMPLE 2 Writing an Equation of a Parabola

Write an equation of the parabola with focus $(0,4)$ and vertex at the origin.
For $y=a x^{2}$, the focus is $\left(0, \frac{1}{4 a}\right)$. Use the given focus, $(0,4)$, to write an equation to find a.

$$
\begin{aligned}
\frac{1}{4 a} & =4 & & \text { Equate the } y \text {-coordinates. } \\
1 & =16 a & & \text { Multiply each side by } 4 a . \\
\frac{1}{16} & =a & & \text { Divide each side by } 16 .
\end{aligned}
$$

\therefore An equation of the parabola is $y=\frac{1}{16} x^{2}$.

A birdwatcher uses a parabolic microphone to collect and record bird sounds. The cross section of the microphone can be modeled by $y=\frac{1}{24} x^{2}$, where x and y are measured

in inches. The focus is located at the end of the receiver arm. What is the length of the receiver arm?

The arm length is the distance from the focus to the vertex.
Identify the focus. For the function $y=\frac{1}{24} x^{2}, a=\frac{1}{24}$.

A birdwatcher uses a parabolic microphone to collect and record bird sounds. The cross section of the microphone can be modeled by $y=\frac{1}{24} x^{2}$, where x and y are measured

in inches. The focus is located at the end of the receiver arm. What is the length of the receiver arm?

The arm length is the distance from the focus to the vertex.
Identify the focus. For the function $y=\frac{1}{24} x^{2}, a=\frac{1}{24}$. $\frac{1}{4 a}=\frac{1}{4\left(\frac{1}{24}\right)}$ Substitute $\frac{1}{24}$ for a.

A birdwatcher uses a parabolic microphone to collect and record bird sounds. The cross section of the microphone can be modeled by $y=\frac{1}{24} x^{2}$, where x and y are measured

in inches. The focus is located at the end of the receiver arm. What is the length of the receiver arm?

The arm length is the distance from the focus to the vertex.
Identify the focus. For the function $y=\frac{1}{24} x^{2}, a=\frac{1}{24}$.

$$
\begin{aligned}
\frac{1}{4 a} & =\frac{1}{4\left(\frac{1}{24}\right)} & & \text { Substitute } \frac{1}{24} \text { for } a . \\
& =\frac{1}{\frac{1}{6}} & & \text { Multiply. }
\end{aligned}
$$

A birdwatcher uses a parabolic microphone to collect and record bird sounds. The cross section of the microphone can be modeled by $y=\frac{1}{24} x^{2}$, where x and y are measured

in inches. The focus is located at the end of the receiver arm. What is the length of the receiver arm?

The arm length is the distance from the focus to the vertex.
Identify the focus. For the function $y=\frac{1}{24} x^{2}, a=\frac{1}{24}$.

$$
\begin{aligned}
\frac{1}{4 a} & =\frac{1}{4\left(\frac{1}{24}\right)} & & \text { Substitute } \frac{1}{24} \text { for } a . \\
& =\frac{1}{\frac{1}{6}} & & \text { Multiply. } \\
& =6 & & \text { Divide. }
\end{aligned}
$$

EXAMPLE 3 Real-Life Application

A birdwatcher uses a parabolic microphone to collect and record bird sounds. The cross section of the microphone can be modeled by $y=\frac{1}{24} x^{2}$, where x and y are measured
 in inches. The focus is located at the end of the receiver arm. What is the length of the receiver arm?

The arm length is the distance from the focus to the vertex.
Identify the focus. For the function $y=\frac{1}{24} x^{2}, a=\frac{1}{24}$.

$$
\begin{aligned}
\frac{1}{4 a} & =\frac{1}{4\left(\frac{1}{24}\right)} \\
& =\frac{1}{\frac{1}{6}} \\
& =6
\end{aligned}
$$

$$
\text { Substitute } \frac{1}{24} \text { for } a \text {. }
$$

Multiply.

The focus is $(0,6)$. The vertex is $(0,0)$. The distance from $(0,0)$ to $(0,6)$ is 6 units.

