Essential Question How can you recognize and factor special products?

Factoring Special Products

Lesson 7.9

SO Key Idea

Difference of Squares: $a^{2}-b^{2}=(a+b)(a-b)$
If we are subtracting two perfect squares then it will always factor to the sum and difference of the square roots.

Example 1.

$$
\begin{aligned}
x^{2}-16 & \text { Subtracting two perfect squares, the square roots are } x \text { and } 4 \\
(x+4)(x-4) & \text { Our Solution }
\end{aligned}
$$

Example 2.
$9 a^{2}-25 b^{2} \quad$ Subtracting two perfect squares, the square roots are $3 a$ and $5 b$
$(3 a+5 b)(3 a-5 b) \quad$ Our Solution

Another factoring shortcut is the Square of a Binomial. We had a shortcut for multiplying the Square of a Binomial which can be reversed to help us factor a Perfect Square Trinomial.

Key Idea

Perfect Square Trinomial Pattern

$$
a^{2}+2 a b+b^{2}=(a+b)^{2}
$$

We can factor using the square roots of the first and last terms and the sign from the middle. This is shown in the following examples.

Example 3.
$x^{2}-6 x+9$ The square roots are x and 3 , and the sign in the middle is subtraction.

$$
(x-3)^{2}
$$

Example 4.
$4 x^{2}+20 x y+25 y^{2} \quad$ The square roots are $2 x$ and $5 y$, and the sign in the middle is addition.

$$
(2 x+5 y)^{2}
$$

Real-Life Application

A bird picks up a golf ball and drops it while flying. The function represents the height y (in feet) of the golf ball t seconds after it is dropped. The ball hits the top of a 32 -foot tall pine tree. After how many seconds does the ball hit the tree?

Real-Life Application

A bird picks up a golf ball and drops it while flying. The function represents the height y (in feet) of the golf ball t seconds after it is dropped. The ball hits the top of a 32 -foot tall pine tree. After how many seconds does the ball hit the tree?

Substitute 32 for y and solve for t.

Real-Life Application

A bird picks up a golf ball and drops it while flying. The function represents the height y (in feet) of the golf ball t seconds after it is dropped. The ball hits the top of a 32-foot tall pine tree. After how many seconds does the ball hit the tree?

Substitute 32 for y and solve for t.

$$
\begin{aligned}
y & =81-16 t^{2} \\
32 & =81-16 t^{2}
\end{aligned}
$$

Real-Life Application

A bird picks up a golf ball and drops it while flying. The function represents the height y (in feet) of the golf ball t seconds after it is dropped. The ball hits the top of a 32 -foot tall pine tree. After how many seconds does the ball hit the tree?

Substitute 32 for y and solve for t.

$$
\begin{aligned}
y & =81-16 t^{2} \\
32 & =81-16 t^{2} \\
0 & =49-16 t^{2}
\end{aligned}
$$

Real-Life Application

A bird picks up a golf ball and drops it while flying. The function represents the height y (in feet) of the golf ball t seconds after it is dropped. The ball hits the top of a 32 -foot tall pine tree. After how many seconds does the ball hit the tree?

Substitute 32 for y and solve for t.

$$
\begin{aligned}
y & =81-16 t^{2} \\
32 & =81-16 t^{2} \\
0 & =49-16 t^{2} \\
0 & =7^{2}-(4 t)^{2}
\end{aligned}
$$

Real-Life Application

A bird picks up a golf ball and drops it while flying. The function represents the height y (in feet) of the golf ball t seconds after it is dropped. The ball hits the top of a 32 -foot tall pine tree. After how many seconds does the ball hit the tree?

Substitute 32 for y and solve for t.

$$
\begin{aligned}
y & =81-16 t^{2} \\
32 & =81-16 t^{2} \\
0 & =49-16 t^{2} \\
0 & =7^{2}-(4 t)^{2} \\
0 & =(7+4 t)(7-4 t)
\end{aligned}
$$

Real-Life Application

A bird picks up a golf ball and drops it while flying. The function represents the height y (in feet) of the golf ball t seconds after it is dropped. The ball hits the top of a 32 -foot tall pine tree. After how many seconds does the ball hit the tree?

Substitute 32 for y and solve for t.

$$
\begin{aligned}
y & =81-16 t^{2} \\
32 & =81-16 t^{2} \\
0 & =49-16 t^{2} \\
0 & =7^{2}-(4 t)^{2} \\
0 & =(7+4 t)(7-4 t) \\
7+4 t & =0 \quad \text { or } \quad 7-4 t=0
\end{aligned}
$$

Real-Life Application

A bird picks up a golf ball and drops it while flying. The function represents the height y (in feet) of the golf ball t seconds after it is dropped. The ball hits the top of a 32 -foot tall pine tree. After how many seconds does the ball hit the tree?

Substitute 32 for y and solve for t.

$$
\left.\begin{array}{rl}
y & =81-16 t^{2} \\
32 & =81-16 t^{2} \\
0 & =49-16 t^{2} \\
0 & =7^{2}-(4 t)^{2} \\
0 & =(7+4 t)(7-4 t) \\
7+4 t & =0 \quad \text { or } 7-4 t
\end{array}\right)=0
$$

Real-Life Application

A bird picks up a golf ball and drops it while flying. The function represents the height y (in feet) of the golf ball t seconds after it is dropped. The ball hits the top of a 32 -foot tall pine tree. After how many seconds does the ball hit the tree?

Substitute 32 for y and solve for t.

$$
\left.\begin{array}{rl}
y & =81-16 t^{2} \\
32 & =81-16 t^{2} \\
0 & =49-16 t^{2} \\
0 & =7^{2}-(4 t)^{2} \\
0 & =(7+4 t)(7-4 t) \\
7+4 t & =0 \quad \text { or } 7-4 t
\end{array}\right)=0
$$

A negative time does not make sense, so the golf ball hits the tree after 1.75 seconds.

