Factoring Polynomials Using the GCF

Lesson 7.6

Writing a polynomial as a product of factors is called *factoring*.

Factoring Polynomials Using the GCF

- **Step 1:** Find the greatest common factor (GCF) of the terms.
- **Step 2:** Use the Distributive Property to write the polynomial as a product of the GCF and its remaining factors.

Factor each polynomial.

a.
$$2x^2 + 18$$

Step 1: Find the GCF of the terms.

$$2x^2 = 2 \cdot x \cdot x$$
$$18 = 2 \cdot 3 \cdot 3$$

The GCF is 2.

Step 2: Write the polynomial as a product of the GCF and its remaining factors.

$$2x^{2} + 18 = 2(x^{2}) + 2(9)$$
$$= 2(x^{2} + 9)$$

b. $15y^3 + 10y^2$

Step 1: Find the GCF of the terms.

$$15y^{3} = 3 \bullet 5 \bullet y \bullet y \bullet y$$
$$10y^{2} = 2 \bullet 5 \bullet y \bullet y \bullet y$$

The GCF is $5 \cdot y \cdot y = 5y^2$.

Step 2: Write the polynomial as a product of the GCF and its remaining factors.

$$15y^3 + 10y^2 = 5y^2(3y) + 5y^2(2)$$

$$= 5y^2(3y+2)$$

Factor the polynomial.

1.
$$5z^2 + 30$$
2. $3x^2 + 14x$ 3. $8y^2 - 24y$ $5(z^2 + 6)$ $x(3x + 14)$ $8y(y - 3)$

EXAMPLE 2 Solving an Equation by Factoring Solve $4g^2 = -6g$. $4g^2 = -6g$

EXAMPLE 2 Solving an Equation by Factoring Solve $4g^2 = -6g$. $4g^2 = -6g$ $4g^2 + 6g = 0$

EXAMPLE 2 Solving an Equation by Factoring Solve $4g^2 = -6g$. $4g^2 = -6g$ $4g^2 + 6g = 0$ 2g(2g + 3) = 0

EXAMPLE 2 Solving an Equation by Factoring Solve $4g^2 = -6g$. $4g^2 = -6g$ $4g^2 + 6g = 0$ 2g(2g + 3) = 02g = 0 or 2g + 3 = 0

2 Solving an Equation by Factoring EXAMPLE Solve $4g^2 = -6g$. $4g^2 = -6g$ $4g^2 + 6g = 0$ 2g(2g+3) = 02g = 0 or 2g + 3 = 0g = 0 or $g = -\frac{3}{2}$

2 Solving an Equation by Factoring EXAMPLE Solve $4g^2 = -6g$. $4g^2 = -6g$ $4g^2 + 6g = 0$ 2g(2g+3) = 02g = 0 or 2g + 3 = 0g = 0 or $g = -\frac{3}{2}$ The solutions are g = 0 and $g = -\frac{3}{2}$.

Solve the equation.

4.
$$3x^{2} + 21x = 0$$

 $3x(x + 7) = 0$
 $3x = 0 \text{ or } x + 7 = 0$
 $x = 0 \text{ or } x = -7$
6. $18y = 6y^{2}$
 $-6y^{2} + 18y = 0$
 $6y(-y + 3) = 0$
 $6y = 0 \text{ or } -y + 3 = 0$
 $y = 0 \text{ or } y = 3$

5.
$$5z^{2} = 5z$$

 $5z^{2} - 5z = 0$
 $5z(z - 1) = 0$
 $5z = 0 \text{ or } z - 1 = 0$
 $z = 0 \text{ or } z = 1$

Real-Life Application

DOLPHIN A dolphin jumps straight into the air during a performance. The dolphin's height *y* (in feet) after *t* seconds can be modeled by $y = -16t^2 + 24t$.

a. How many seconds is the dolphin in the air? $0 = -16t^2 + 24t$ 0 = 8t(-2t + 3) 8t = 0 or -2t + 3 = 0 t = 0 or -2t = -3t = 1.5

So the dolphin is in the air for 1.5 seconds.

b. The dolphin reaches its maximum height after 0.75 second. What is the maximum height of the jump?

Real-Life Application

DOLPHIN A dolphin jumps straight into the air during a performance. The dolphin's height *y* (in feet) after *t* seconds can be modeled by $y = -16t^2 + 24t$.

a. How many seconds is the dolphin in the air?So the dolphin is in the air for 1.5 seconds.

b. The dolphin reaches its maximum height after 0.75 second. What is the maximum height of the jump? $y = -16(0.75)^2 + 24(0.75)$ y = -9 + 18y = 9

So the maximum height of the jump is 9 feet.

A child jumps straight in the air on a trampoline. The child's height y(in feet) above the trampoline after t seconds can be modeled by $y = -16t^2 + 18t$. How many seconds is the child in the air?

$$0 = -16t^{2} + 18t$$

$$0 = 2t(-8t + 9)$$

$$2t = 0 \quad or \quad -8t + 9 = 0$$

$$t = 0 \quad or \quad -8t = -9$$

$$t = 0 \quad or \quad t = 1.125$$

So the child is in the air for 1.125 seconds.

