Solving Polynomials in Factored Form

Lesson 7.5

Essential Question

How can you solve a polynomial equation that is written in factored form?
Equivalent Forms of Polynomial Equations.
A polynomial is in factored form when it is written as a product of two or more factors.

$$
\begin{gathered}
\text { Standard form } \\
x^{2}+2 x \\
x^{2}+5 x-24 \\
r^{3}+8 r^{2}-16 r-128
\end{gathered}
$$

$$
\begin{gathered}
\text { Factored form } \\
x(x+2) \\
(x-3)(x+8) \\
(r-4)(r+4)(r+8)
\end{gathered}
$$

When one side of an equation is a polynomial in factored form and the other side is 0 , use the Zero-Product Property to solve the polynomial equation. The solutions of the polynomial equations are also called roots.

Key Idea

Zero-Product Property

Words If the product of two real numbers is 0 , then at least one of the numbers is 0 .
Algebra If a and b are real numbers and $a b=0$, then $a=0$ or $b=0$.
Example 1 Solving Polynomial Equations
a. $(x)(x+7)=0$

$$
x=0 \quad \text { or } \quad x+7=0
$$

b. $(x-4)(x+3)=0$

$$
x=-7
$$

$$
\begin{gathered}
x-4=0 \quad \text { or } \quad x+3=0 \\
x=4 \quad \text { or } \quad x=-3
\end{gathered}
$$

The roots are $x=0$ or $x=-7$.
The roots are $x=4$ or $x=-3$.

On Your Own

Solve the equation.

$$
\begin{array}{ll}
\text { 1. }(x)(x-1)=0 & \text { 2. } 3 t(t+2)=0 \\
x=0 \text { or } x=1 & t=0 \text { or } t=-2
\end{array}
$$

3. $(z-4)(z+4)(z-2)=0$
4. $(b+7)^{2}=0$

$$
z=4 \text { or } z=-4 \text { or } z=2
$$

$$
b=-7
$$

Example 2 Solving Polynomial Equation

$$
\begin{array}{lr}
\text { a. }(3 n+8)(3 n-8)=0 & \text { b. }(2-4 x)^{2} \\
3 n+8=0 \text { or } 3 n-8=0 & (2-4 x)(2-4 x) \\
3 n=-8 \text { or } 3 n=8 & 2-4 x=0 \\
n=-\frac{8}{3} \text { or } n=\frac{8}{3} & -4 x=-2 \\
& x=\frac{1}{2}
\end{array}
$$

Rea-Life Application

Choose Tools The entrance of a tunnel can be modeled by $y=\frac{11}{50}(x-4)(x-24)$, where x and y are measured in feet. The x-axis represents the ground. Find the width of the tunnel at the ground level.

$$
\begin{aligned}
0 & =\frac{11}{50}(x-4)(x-24) \\
\left(\frac{50}{11}\right) 0 & =\frac{11}{5}(x-4)(x-24)\left(\frac{0}{11}\right) \\
0 & =(x-4)(x-24) \\
x & -4=0 \text { or } x-24=0 \\
x & =4 \text { or } x=24
\end{aligned}
$$

The width is the distance between the x-coordinates, 4 and 24 .
So the width of the tunnel is $24-4=20$ feet

On Your Own

Solve the equation.

5. $(3 p+5)(3 p-5)=0$
6. $(12-6 x)^{2}=0$

$$
p=-\frac{5}{3} \text { or } p=\frac{5}{3}
$$

$$
x=2
$$

7. The entrance of a mine shaft can be modeled by $y=-\frac{1}{2}(x-4)(x+4)$, where x and y are measured in feet. The x-axis represents the ground.
Find the width of the entrance at the ground level.

$$
x=4 \text { or } x=-4
$$

The width is the distance between the x-coordinates, 4 and -4 .
So the width of the tunnel is $4-(-4)=8$ feet

