POLYNOMIALS

$$
7.1
$$

What does each prefix mean?

mono
one
bi
two
tri
three
poly
more than one

Monomials

A monomial is a number, a variable, or a product of a number and one or more variables with whole number exponents.

Monomials
-4
$\frac{1}{2} y^{2}$
$2.5 x^{2} y$

Not monomials	Reason
$x^{1.5}$	Monomials must have whole number exponents.
$-\frac{2}{z}$	Monomials cannot have variables in the denominator.
7^{y}	Monomials cannot have variable exponents.

The degree of a monomial is the sum of the exponents of the variables in the monomial.

EXAMPLE Finding the Degrees of Monomials

Find the degree of each monomial.

a. $5 x^{2}$

The exponent of x is 2 .
So, the degree is 2 .
b. $-\frac{1}{2} x y^{3}$

The exponent of x is 1 .
The exponent of y is 3 .
$1+3$ is 4 . So, the degree is 4 .
c. -3

You can rewrite -3 as $-3 x^{0}$. The exponent of x is 0 .
So, the degree is 0 .

OnYour Own

Find the degree of the monomial.

1. $-3 x^{4}$ Degree is 4 .
2. $7 c^{3} d^{2} \quad$ Degree is 5 .
3. $\frac{5}{3} y \quad$ Degree is 1 .
4. -20.5 Degree is 0 .

Polynomials

A polynomial is a monomial or a sum of monomials. Each monomial is called a term of the polynomial.

The degree of a polynomial is the greatest degree of its terms. A polynomial in one variable is in standard form when the exponents of the terms decrease from left to right.

EXAMPLE 2 Classifying Polynomials

Write each polynomial in standard form. Identify the degree and classify each polynomial by the number of terms.

Polynomial Standard Form Degree Type of Polynomial

a. $-3 z^{4}$
b. $4+5 x^{2}-x$
c. $8 q+q^{5}$

EXAMPLE 2 Classifying Polynomials

Write each polynomial in standard form. Identify the degree and classify each polynomial by the number of terms.

| | Polynomial | Standard Form | Degree |
| :--- | :---: | :---: | :---: | Type of Polynomial

EXAMPLE 2 Classifying Polynomials

Write each polynomial in standard form. Identify the degree and classify each polynomial by the number of terms.

| | Polynomial | Standard Form | Degree |
| :--- | :---: | :---: | :---: | Type of Polynomial

EXAMPLE 2 Classifying Polynomials

Write each polynomial in standard form. Identify the degree and classify each polynomial by the number of terms.

| | Polynomial | Standard Form | Degree |
| :--- | :---: | :---: | :---: | Type of Polynomial

EXAMPLE 3 Real-Life Application

The polynomial $-16 t^{2}+v_{0} t+s_{0}$ represents the height (in feet) of an object, where v_{0} is the initial vertical velocity (in feet per second), s_{0} is the initial height of the object (in feet), and t is the time (in seconds).
a. Write a polynomial that represents the height of the baseball.
$-16 t^{2}+30 t+4$
b. What is the height of the baseball after 1 second?

EXAMPLE 3 Real-Life Application

The polynomial $-16 t^{2}+v_{0} t+s_{0}$ represents the height (in feet) of an object, where v_{0} is the initial vertical velocity (in feet per second), s_{0} is the initial height of the object (in feet), and t is the time (in seconds).
a. Write a polynomial that represents the height of the baseball.

$$
-16 t^{2}+30 t+4
$$

b. What is the height of the baseball after 1 second?

$$
-16 t^{2}+30 t+4=-16(1)^{2}+30(1)+4
$$

EXAMPLE 3 Real-Life Application

The polynomial $-16 t^{2}+v_{0} t+s_{0}$ represents the height (in feet) of an object, where v_{0} is the initial vertical velocity (in feet per second), s_{0} is the initial height of the object (in feet), and t is the time (in seconds).
a. Write a polynomial that represents the height of the baseball.

$$
-16 t^{2}+30 t+4
$$

b. What is the height of the baseball after 1 second?

$$
\begin{aligned}
-16 t^{2}+30 t+4 & =-16(1)^{2}+30(1)+4 \\
& =-16+30+4
\end{aligned}
$$

EXAMPLE 3 Real-Life Application

The polynomial $-16 t^{2}+v_{0} t+s_{0}$ represents the height (in feet) of an object, where v_{0} is the initial vertical velocity (in feet per second), s_{0} is the initial height of the object (in feet), and t is the time (in seconds).
a. Write a polynomial that represents the height of the baseball.

$$
-16 t^{2}+30 t+4
$$

b. What is the height of the baseball after 1 second?

$$
\begin{aligned}
-16 t^{2}+30 t+4 & =-16(1)^{2}+30(1)+4 \\
& =-16+30+4 \\
& =18
\end{aligned}
$$

\therefore :- The height of the baseball after 1 second is 18 feet.

OnYour Own

Write the polynomial in standard form. Identify the degree and classify the polynomial by the number of terms.
5. $4-9 z$
6. $t^{2}-t^{3}-10 t$
7. $2.8 x+x^{3}$
$-9 z+4$
Degree is 1
Binomial
$-t^{3}+t^{2}-10 t$
Degree is 3
Trinomial
$x^{3}+2.8 x t$
Degree is 3
Binomial
8. In Example 3, the initial height is 5 feet. What is the height of the baseball after 2 seconds?

$$
\begin{aligned}
-16 t^{2}+30 t+5 & =-16(2)^{2}+30(2)+5 \\
& =-64+65 \\
& =1
\end{aligned}
$$

The height of the baseball after 2 seconds is 1 foot.

