Graphing Rational Functions 11.2

The inverse variation equations in Section 11.1 are rational functions.

Key Idea

- A rational function is a function written in the form of $y=\frac{\text { polynomial }}{\text { polynomial }}$
- The denominator cannot equal 0 .
- The most basic rational function or parent function is $y=\frac{1}{x}$.

Because division by 0 is undefined, the value of the denominator of a rational function cannot be 0 . So, the domain of a rational function excludes values that make the denominator 0 . These values are called excluded values of the rational function.

```
EXAMPLE (1 Finding the Excluded Value of a Rational Function
```

$$
\text { Find the excluded value of } y=\frac{2}{x+5}
$$

Because division by 0 is undefined, the value of the denominator of a rational function cannot be 0 . So, the domain of a rational function excludes values that make the denominator 0 . These values are called excluded values of the rational function.

EXAMPLE (1) Finding the Excluded Value of a Rational Function

Find the excluded value of $y=\frac{2}{x+5}$.
Find the value of x that makes the denominator 0 .

Because division by 0 is undefined, the value of the denominator of a rational function cannot be 0 . So, the domain of a rational function excludes values that make the denominator 0 . These values are called excluded values of the rational function.

EXAMPLE (1) Finding the Excluded Value of a Rational Function

Find the excluded value of $y=\frac{2}{x+5}$.
Find the value of x that makes the denominator 0 .

$$
x+5=0 \quad \text { Use the denominator to write an equation. }
$$

Because division by 0 is undefined, the value of the denominator of a rational function cannot be 0 . So, the domain of a rational function excludes values that make the denominator 0 . These values are called excluded values of the rational function.

EXAMPLE (1) Finding the Excluded Value of a Rational Function

Find the excluded value of $y=\frac{2}{x+5}$.
Find the value of x that makes the denominator 0 .

$$
\begin{aligned}
x+5 & =0 & & \text { Use the denominator to write an equation. } \\
x & =-5 & & \text { Subtract } 5 \text { from each side. }
\end{aligned}
$$

Because division by 0 is undefined, the value of the denominator of a rational function cannot be 0 . So, the domain of a rational function excludes values that make the denominator 0 . These values are called excluded values of the rational function.

EXAMPLE (1) Finding the Excluded Value of a Rational Function

Find the excluded value of $y=\frac{2}{x+5}$.
Find the value of x that makes the denominator 0 .

$$
\begin{aligned}
x+5 & =0 & & \text { Use the denominator to write an equation. } \\
x & =-5 & & \text { Subtract } 5 \text { from each side. }
\end{aligned}
$$

\therefore The excluded value is $x=-5$.

EXAMPLE 2 Graphing a Rational Function

Graph $y=\frac{1}{x-1}$. Describe the domain and range.
The excluded value is $x=1$, so choose x-values on either side of 1 .
Step 1: Make a table of values.

x									
y									
y									

Step 2: Plot the ordered pairs.
Step 3: Draw a smooth curve through the points on each side of $x=1$.

Domain: All real \#s except for 1.
Range: All real \#s except for 0 .

On Your Own

Find the excluded value of the function.

1. $y=\frac{3}{2 x}$
2. $y=\frac{1}{x-4}$
3. $y=\frac{8}{3 x+1}$

Graph the function. Describe the domain and range.
4. $y=-\frac{8}{x}$
5. $y=\frac{1}{x+2}$

On Your Own

Find the excluded value of the function.

1. $y=\frac{3}{2 x}$
2. $y=\frac{1}{x-4}$
3. $y=\frac{8}{3 x+1}$
$x=0$

Graph the function. Describe the domain and range.
4. $y=-\frac{8}{x}$
5. $y=\frac{1}{x+2}$

On Your Own

Find the excluded value of the function.

1. $y=\frac{3}{2 x}$
2. $y=\frac{1}{x-4}$
3. $y=\frac{8}{3 x+1}$
$x=0$
$x=4$

Graph the function. Describe the domain and range.
4. $y=-\frac{8}{x}$
5. $y=\frac{1}{x+2}$

On Your Own

Find the excluded value of the function.

1. $y=\frac{3}{2 x}$
2. $y=\frac{1}{x-4}$
3. $y=\frac{8}{3 x+1}$
$x=0$
$x=4$
$x=-\frac{1}{3}$

Graph the function. Describe the domain and range.
4. $y=-\frac{8}{x}$

The domain is all real numbers except 0 and the range is all real numbers except 0 .
5. $y=\frac{1}{x+2}$

The domain is all real numbers except -2 and the range is all real numbers except 0 .

Asymptotes

- Places on the graph the function will approach, but will never touch.

©O Key Idea

Asymptotes

The graph of a rational function of the form $y=\frac{a}{x-h}+k$, where $a \neq 0$, has a vertical asymptote $x=h$ and a horizontal asymptote $y=k$.

EXAMPLE 3 Identifying Asymptotes

Identify the asymptotes of the graph of $y=\frac{1}{x-2}-4$. Then describe the domain and range.

Domain: All real \#s except for 2.
Range: All real \#s except for -4.

On Your Own

Identify the asymptotes of the graph of the function. Then describe the domain and range.
7. $y=\frac{2}{x}+1$
$x=0, y=1$;
The domain is all real numbers except 0 and the range is all real numbers except 1 .
8. $y=\frac{1}{x+5}$
$x=-5, y=0$;
The domain is all real numbers except -5
and the range is all real numbers except 0 .

Graph $y=\frac{1}{x+2}+3$. Compare the graph to the graph of $y=\frac{1}{x}$.
Pay attention to the transformation clues!

$$
y=\frac{a}{x-h}+k
$$

vertical translation

$$
(-k=\operatorname{down},+k=u p)
$$

horizontal translation
(+h = left, -h = right)

The graph of $y=\frac{1}{x+2}+3$ is a translation
3 units up and 2 units left of the graph of $y=\frac{1}{x}$.

EXAMPLE 5 Real-Life Application

The French club is planning a trip to Quebec City. The function $y=\frac{800}{x+2}+400$ represents the cost y (in dollars) per student when x students and 2 chaperones go on the trip. How many students must go on the trip for the cost per student to be about $\$ 450$?

Step 1: Substitute 450 for y.

$$
450=\frac{800}{x+2}+400
$$

Step 2: Solve for x.

$$
\begin{aligned}
& 50=\frac{800}{x+2} \\
& 50 x+100=800 \\
& 50 x=700 \quad \\
& x=14 \quad \text { About } 14 \text { students must go on the trip } \\
& x
\end{aligned}
$$

