

Recall that a relation pairs inputs with outputs. An inverse relation switches the input and output values of the original relation. For example, if a relation contains (a, b), then the inverse relation contains (b, a).
exAMPLE Finding Inverse Relations
a. $(-4,7),(-2,4),(0,1),(2,-2),(4,-5)$
b.

Input	-1	0	1	2	3	4
Output	5	10	15	20	25	30

Recall that a relation pairs inputs with outputs. An inverse relation switches the input and output values of the original relation. For example, if a relation contains (a, b), then the inverse relation contains (b, a).

example (1) Finding Inverse Relations

a. $(-4,7),(-2,4),(0,1),(2,-2),(4,-5)$

Switch the coordinates of each ordered pair.
b.

Input	-1	0	1	2	3	4
Output	5	10	15	20	25	30

Recall that a relation pairs inputs with outputs. An inverse relation switches the input and output values of the original relation. For example, if a relation contains (a, b), then the inverse relation contains (b, a).

EXAMPLE © Finding Inverse Relations

a. $(-4,7),(-2,4),(0,1),(2,-2),(4,-5)$

b.

Input	-1	0	1	2	3	4
Output	5	10	15	20	25	30

Switch the inputs Inverse relation: and outputs.

Input	5	10	15	20	25	30
Output	-1	0	1	2	3	4

Notice how the domain of the relation becomes the range of the inverse relation, and the range of the relation becomes the domain of the inverse relation.

When a relation and its inverse are functions, they are called inverse functions. The inverse of a function f is written as $f^{-1}(x)$.
Study Tip: -1 in $f^{-1}(x)$ is not an exponent. It is read as " f inverse" x.
To Find the Inverse of a Function:

- Change $f(x)$ to a y.
- Switch the x and y values.
- Solve the new equation for y.
- Replace y with $f^{-1}(x)$

Example: $f(x)=2 \mathrm{x}-5$.

When a relation and its inverse are functions, they are called inverse functions. The inverse of a function f is written as $f^{-1}(x)$.
Study Tip: -1 in $f^{-1}(x)$ is not an exponent. It is read as " f inverse" x.
To Find the Inverse of a Function:

- Change $f(x)$ to a y.
- Switch the x and y values.
- Solve the new equation for y.
- Replace y with $f^{-1}(x)$

Example: $f(x)=2 \mathrm{x}-5$.

$$
y=2 x-5 \quad \text { Replace } f(x) \text { with } y \text {. }
$$

When a relation and its inverse are functions, they are called inverse functions. The inverse of a function f is written as $f^{-1}(x)$.
Study Tip: -1 in $f^{-1}(x)$ is not an exponent. It is read as " f inverse" x.
To Find the Inverse of a Function:

- Change $f(x)$ to a y.
- Switch the x and y values.
- Solve the new equation for y.
- Replace y with $f^{-1}(x)$

Example: $f(x)=2 \mathrm{x}-5$.

$$
\begin{array}{ll}
y=2 x-5 & \text { Replace } f(x) \text { with } y . \\
x=2 y-5 & \text { Switch } x \text { and } y .
\end{array}
$$

When a relation and its inverse are functions, they are called inverse functions. The inverse of a function f is written as $f^{-1}(x)$.
Study Tip: -1 in $f^{-1}(x)$ is not an exponent. It is read as " f inverse" x.
To Find the Inverse of a Function:

- Change $f(x)$ to a y.
- Switch the x and y values.
- Solve the new equation for y.
- Replace y with $f^{-1}(x)$

Example: $f(x)=2 \mathrm{x}-5$.

$$
\begin{aligned}
y & =2 x-5 & & \text { Replace } f(x) \text { with } y . \\
x & =2 y-5 & & \text { Switch } x \text { and } y . \\
x+5 & =2 y & & \text { Add } 5 \text { to each side. }
\end{aligned}
$$

When a relation and its inverse are functions, they are called inverse functions. The inverse of a function f is written as $f^{-1}(x)$.
Study Tip: -1 in $f^{-1}(x)$ is not an exponent. It is read as " f inverse" x.
To Find the Inverse of a Function:

- Change $f(x)$ to a y.
- Switch the x and y values.
- Solve the new equation for y.
- Replace y with $f^{-1}(x)$

Example: $f(x)=2 \mathrm{x}-5$.

$$
\begin{aligned}
y & =2 x-5 & & \text { Replace } f(x) \text { with } y . \\
x & =2 y-5 & & \text { Switch } x \text { and } y . \\
x+5 & =2 y & & \text { Add } 5 \text { to each side. } \\
\frac{1}{2} x+\frac{5}{2} & =y & & \text { Divide each side by } 2 .
\end{aligned}
$$

When a relation and its inverse are functions, they are called inverse functions. The inverse of a function f is written as $f^{-1}(x)$.
Study Tip: -1 in $f^{-1}(x)$ is not an exponent. It is read as " f inverse" x.
To Find the Inverse of a Function:

- Change $f(x)$ to a y.
- Switch the x and y values.
- Solve the new equation for y.
- Replace y with $f^{-1}(x)$

Example: $f(x)=2 \mathrm{x}-5$.

$$
\begin{aligned}
y & =2 x-5 & & \text { Replace } f(x) \text { with } y . \\
x & =2 y-5 & & \text { Switch } x \text { and } y . \\
x+5 & =2 y & & \text { Add } 5 \text { to each side. } \\
\frac{1}{2} x+\frac{5}{2} & =y & & \text { Divide each side by } 2 . \\
\frac{1}{2} x+\frac{5}{2} & =f^{-1}(x) & & \text { Replace } y \text { with } f^{-1}(x) .
\end{aligned}
$$

On Your Own

1. Find the inverse of the relation:

$$
\begin{aligned}
& (-6,4),(-3,2),(0,0),(3,-2),(6,-4) . \\
& (4,-6),(2,-3),(0,0),(-2,3),(-4,6)
\end{aligned}
$$

2. Find the inverse of the function of $f(x)=x^{2}$, where $x \geq 0$.

Graph the inverse function.

$$
\sqrt{x}=f^{-1}(x)
$$

HORIZONTAL LINE TEST

If no horizontal line intersects the graph of a function f more than once, then the inverse of \boldsymbol{f} is itself a function.

