Direct and Inverse Variation 11.1

Direct Variation

- When we talk about a direct variation, we are talking about a relationship where as x increases, y increases or decreases at a CONSTANT RATE.
- Two quantities x and y show direct variation when $y=k x$, where k is a nonzero constant.
- The ratio $\frac{y}{x}$ is constant.
- All direct variation graphs go through the origin.

$y=k x, k>0$

$y=k x, k<0$

Inverse Variation

- In an inverse relationship as one value goes up, the other goes down.
- Two quantities x and y show inverse variation when $y=\frac{k}{x}$, where k is a nonzero constant.
- The product $x y$ is constant.

$$
y=\frac{k}{x}, k>0
$$

EXAMPLE (I) Identifying Direct and Inverse Variation

Tell whether x and y show direct variation, inverse variation, or neither. Explain your reasoning.
a.

x	1	2	3	4
y	5	10	15	20

Direct variation. The ratio $\frac{y}{x}$ is constant.
b. $4 x y=-4$

Inverse variation. The equation can be written in the form of $y=\frac{-1}{x}$.

EXAMPLE 2 Writing and Graphing a Direct Variation Equation

1. Plug in the known values for x and y into the model: $y=k x$.
2. Solve for k.
3. Now write the model $y=k x$ and replace k with the number.

Example: The variable y varies directly with x. When $x=12, y=-6$. Write and graph a direct variation equation that relates x and y.

EXAMPLE 2 Writing and Graphing a Direct Variation Equation

1. Plug in the known values for x and y into the model: $y=k x$.
2. Solve for k.
3. Now write the model $y=k x$ and replace k with the number.

Example: The variable y varies directly with x. When $x=12, y=-6$. Write and graph a direct variation equation that relates x and y.

$$
y=k x \quad \text { Write the direct variation equation. }
$$

EXAMPLE Writing and Graphing a Direct Variation Equation

1. Plug in the known values for x and y into the model: $y=k x$.
2. Solve for k.
3. Now write the model $y=k x$ and replace k with the number.

Example: The variable y varies directly with x. When $x=12, y=-6$. Write and graph a direct variation equation that relates x and y.

$$
\begin{aligned}
y & =k x & & \text { Write the direct variation equation. } \\
-6 & =k(12) & & \text { Substitute } 12 \text { for } x \text { and }-6 \text { for } y .
\end{aligned}
$$

EXAMPLE 2 Writing and Graphing a Direct Variation Equation

1. Plug in the known values for x and y into the model: $y=\mathrm{k} x$.
2. Solve for k .
3. Now write the model $y=\mathrm{k} x$ and replace k with the number.

Example: The variable y varies directly with x. When $x=12, y=-6$. Write and graph a direct variation equation that relates x and y.

$$
\begin{aligned}
y & =k x & & \text { Write the direct variation equation. } \\
-6 & =k(12) & & \text { Substitute } 12 \text { for } x \text { and }-6 \text { for } y . \\
-\frac{1}{2} & =k & & \text { Divide each side by } 12 .
\end{aligned}
$$

So, the equation that relates x and y is $y=-\frac{1}{2} x$.

EXAMPLE 3 Writing and Graphing an Inverse Variation Equation

1. Plug in the known values for x and y into the model: $y=\frac{k}{x}$.
2. Solve for k .
3. Now write the model $y=\frac{k}{x}$ and replace k with the number.

Example: The variable y varies inversely with x. When $x=2, y=5$.

EXAMPLE 3 Writing and Graphing an Inverse Variation Equation

1. Plug in the known values for x and y into the model: $y=\frac{k}{x}$.
2. Solve for k.
3. Now write the model $y=\frac{k}{x}$ and replace k with the number.

Example: The variable y varies inversely with x. When $x=2, y=5$.

$$
y=\frac{k}{x} \quad \text { Write the inverse variation equation. }
$$

EXAMPLE Writing and Graphing an Inverse Variation Equation

1. Plug in the known values for x and y into the model: $y=\frac{k}{x}$.
2. Solve for k.
3. Now write the model $y=\frac{k}{x}$ and replace k with the number.

Example: The variable y varies inversely with x. When $x=2, y=5$.

$$
\begin{array}{ll}
y=\frac{k}{x} & \text { Write the inverse variation equation. } \\
5=\frac{k}{2} & \text { Substitute } 2 \text { for } x \text { and } 5 \text { for } y .
\end{array}
$$

EXAMPLE 3 Writing and Graphing an Inverse Variation Equation

1. Plug in the known values for x and y into the model: $y=\frac{k}{x}$.
2. Solve for k .
3. Now write the model $y=\frac{k}{x}$ and replace k with the number.

Example: The variable y varies inversely with x. When $x=2, y=5$.

$$
\begin{aligned}
y=\frac{k}{x} & \text { Write the inverse variation equation. } \\
5=\frac{k}{2} & \text { Substitute } 2 \text { for } x \text { and } 5 \text { for } y . \\
10 & =k
\end{aligned} \text { Multiply each side by } 2 . ~ \$
$$

So, an equation that relates x and y is $y=\frac{10}{x}$.
Make a table of values and graph the ordered pairs.

x							
y							

EXAMPLE 4, Identifying Inverse Variation

Which situation represents inverse variation?
(A)

Number of tickets, \boldsymbol{x}	1	2	3
Total cost, \boldsymbol{y}	7.50	15	22.50

No.

(B) | Number of pounds, \boldsymbol{x} | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: |
| Total earned, \boldsymbol{y} | 0.50 | 1 | 1.50 |

No.
(C)

Number of people, \boldsymbol{x}	1	2	3
Cost per person, \boldsymbol{y}	600	300	200

(D) | Number of songs, \boldsymbol{x} | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: |
| Total cost, \boldsymbol{y} | 0.99 | 1.98 | 2.97 |

No.

On Your Own

Tell whether x and y show direct variation, inverse variation, or neither. Explain your reasoning.
1.

\boldsymbol{x}	1	2	3	4
y	24	12	8	6

Inverse variation: The product $x y$ is constant.
2. $y=3 x+1 \quad$ Neither. The equation cannot be written in the form of $y=k x$ or $y=\frac{k}{x}$.
3. The variable y varies directly with x. When $x=3, y=15$. Write a direct variation equation that relates x and y.

$$
y=5 x
$$

4. The variable y varies inversely with x. When $x=5, y=4$. Write an inverse variation equation that relates x and y.

$$
y=\frac{20}{x}
$$

