Solving Square Root Equations Lesson 10.2

Squaring Each Side of an Equation

Words If two expressions are equal, then their squares are also equal.

Algebra If a = b, then $a^2 = b^2$.

Examples: a. Solve $\sqrt{x} + 5 = 13$.

b. Solve $3 - \sqrt{x} = 0$.

)

Squaring Each Side of an Equation

Words If two expressions are equal, then their squares are also equal.

Algebra If a = b, then $a^2 = b^2$.

Examples: a. Solve $\sqrt{x} + 5 = 13$.

b. Solve $3 - \sqrt{x} = 0$.

$$\sqrt{x} + 5 = 13$$

2

Squaring Each Side of an Equation

Words If two expressions are equal, then their squares are also equal.

Algebra If a = b, then $a^2 = b^2$.

Examples: a. Solve $\sqrt{x} + 5 = 13$.

b. Solve $3 - \sqrt{x} = 0$.

$$\sqrt{x} + 5 = 13$$
$$\sqrt{x} = 8$$

)

Squaring Each Side of an Equation

Words If two expressions are equal, then their squares are also equal.

Algebra If a = b, then $a^2 = b^2$.

Examples: a. Solve $\sqrt{x} + 5 = 13$.

$$\sqrt{x} + 5 = 13$$

$$\sqrt{x} = 8$$

$$(\sqrt{x})^2 = 8^2$$

Squaring Each Side of an Equation

Words If two expressions are equal, then their squares are also equal.

Algebra If a = b, then $a^2 = b^2$.

Examples: a. Solve $\sqrt{x} + 5 = 13$.

$$\sqrt{x} + 5 = 13$$

$$\sqrt{x} = 8$$

$$(\sqrt{x})^2 = 8^2$$

$$x = 64$$

Squaring Each Side of an Equation

Words If two expressions are equal, then their squares are also equal.

Algebra If a = b, then $a^2 = b^2$.

Examples: a. Solve $\sqrt{x} + 5 = 13$.

$$\sqrt{x} + 5 = 13$$

$$\sqrt{x} = 8$$

$$(\sqrt{x})^2 = 8^2$$

$$x = 64$$

$$3 - \sqrt{x} = 0$$

Squaring Each Side of an Equation

Words If two expressions are equal, then their squares are also equal.

Algebra If a = b, then $a^2 = b^2$.

Examples: a. Solve $\sqrt{x} + 5 = 13$.

$$\sqrt{x} + 5 = 13$$

$$\sqrt{x} = 8$$

$$(\sqrt{x})^2 = 8^2$$

$$x = 64$$

$$3 - \sqrt{x} = 0$$
$$3 = \sqrt{x}$$

Squaring Each Side of an Equation

Words If two expressions are equal, then their squares are also equal.

Algebra If a = b, then $a^2 = b^2$.

Examples: a. Solve $\sqrt{x} + 5 = 13$.

$$\sqrt{x} + 5 = 13$$

$$\sqrt{x} = 8$$

$$(\sqrt{x})^2 = 8^2$$

$$x = 64$$

$$3 - \sqrt{x} = 0$$
$$3 = \sqrt{x}$$
$$3^{2} = (\sqrt{x})^{2}$$

Squaring Each Side of an Equation

Words If two expressions are equal, then their squares are also equal.

Algebra If a = b, then $a^2 = b^2$.

Examples: a. Solve
$$\sqrt{x} + 5 = 13$$
.

$$\sqrt{x} + 5 = 13$$

$$\sqrt{x} = 8$$

$$(\sqrt{x})^2 = 8^2$$

$$x = 64$$

b. Solve
$$3 - \sqrt{x} = 0$$
.

$$3 - \sqrt{x} = 0$$
$$3 = \sqrt{x}$$
$$3^{2} = (\sqrt{x})^{2}$$
$$9 = x$$

Remember: $(\sqrt{n})^2 = n$

On Your Own

Solve the equation. Check your solution.

1.
$$\sqrt{x} = 6$$

$$x = 36$$

2.
$$\sqrt{x} - 7 = 3$$

$$x = 100$$

3.
$$\sqrt{x} + 15 = 22$$

$$x = 49$$

4.
$$1 - \sqrt{x} = -2$$

$$x = 9$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

$$4\sqrt{x+2} = 16$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

$$4\sqrt{x+2} = 16$$

$$\sqrt{x+2} = 4$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

$$4\sqrt{x+2} = 16$$

$$\sqrt{x+2}=4$$

$$\left(\sqrt{x+2}\right)^2 = 4^2$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

$$4\sqrt{x+2} = 16$$

$$\sqrt{x+2}=4$$

$$(\sqrt{x+2})^2 = 4^2$$

$$x + 2 = 16$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

$$4\sqrt{x+2} = 16$$

$$\sqrt{x+2} = 4$$

$$(\sqrt{x+2})^2 = 4^2$$

$$x + 2 = 16$$

$$x = 14$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

$$4\sqrt{x+2} = 16$$

$$\sqrt{x+2}=4$$

$$(\sqrt{x+2})^2 = 4^2$$

$$x + 2 = 16$$

$$x = 14$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

$$4 = \sqrt{3x - 2}$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

$$4\sqrt{x+2} = 16$$

$$\sqrt{x+2}=4$$

$$\left(\sqrt{x+2}\right)^2 = 4^2$$

$$x + 2 = 16$$

$$x = 14$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

$$4 = \sqrt{3x - 2}$$

$$(4)^2 = (\sqrt{3x-2})^2$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

$$4\sqrt{x+2} = 16$$

$$\sqrt{x+2} = 4$$

$$(\sqrt{x+2})^2 = 4^2$$

$$x + 2 = 16$$

$$x = 14$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

$$4 = \sqrt{3x - 2}$$

$$(4)^2 = (\sqrt{3x-2})^2$$

$$16 = 3x - 2$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

$$4\sqrt{x+2} = 16$$

$$\sqrt{x+2} = 4$$

$$\left(\sqrt{x+2}\right)^2 = 4^2$$

$$x + 2 = 16$$

$$x = 14$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

$$4 = \sqrt{3x - 2}$$

$$(4)^2 = (\sqrt{3x-2})^2$$

$$16 = 3x - 2$$

$$18 = 3x$$

c. Solve
$$4\sqrt{x+2} + 3 = 19$$

$$4\sqrt{x+2} = 16$$

$$\sqrt{x+2} = 4$$

$$\left(\sqrt{x+2}\right)^2 = 4^2$$

$$x + 2 = 16$$

$$x = 14$$

d. Solve
$$6 = 2 + \sqrt{3x - 2}$$

$$4 = \sqrt{3x - 2}$$

$$(4)^2 = (\sqrt{3x-2})^2$$

$$16 = 3x - 2$$

$$18 = 3x$$

$$6 = x$$

Solve
$$\sqrt{2x - 1} = \sqrt{x + 4}$$
.

Solve
$$\sqrt{2x - 1} = \sqrt{x + 4}$$
.

$$\sqrt{2x-1} = \sqrt{x+4}$$

$$(\sqrt{2x-1})^2 = (\sqrt{x+4})^2$$

Solve
$$\sqrt{2x-1} = \sqrt{x+4}$$
.

$$\sqrt{2x - 1} = \sqrt{x + 4}$$

$$(\sqrt{2x - 1})^2 = (\sqrt{x + 4})^2$$

$$2x - 1 = x + 4$$

Solve
$$\sqrt{2x-1} = \sqrt{x+4}$$
.

$$\sqrt{2x-1} = \sqrt{x+4}$$

$$(\sqrt{2x-1})^2 = (\sqrt{x+4})^2$$

$$2x-1 = x+4$$

$$x-1 = 4$$

Solve
$$\sqrt{2x-1} = \sqrt{x+4}$$
.

$$\sqrt{2x-1} = \sqrt{x+4}$$

$$(\sqrt{2x-1})^2 = (\sqrt{x+4})^2$$

$$2x-1 = x+4$$

$$x-1 = 4$$

$$x = 5$$

Squaring each side of an equation can sometimes introduce a solution that is *not* a solution of the original equation. This solution is called an **extraneous solution.** Be sure to always substitute your solutions into the original equation to check for extraneous solutions.

Example: $x = \sqrt{x+6}$

Example:
$$x = \sqrt{x+6}$$

$$x^2 = (\sqrt{x+6})^2$$

Example:
$$x = \sqrt{x+6}$$

$$x^2 = (\sqrt{x+6})^2$$

$$x^2 = x+6$$

Example:
$$x = \sqrt{x+6}$$

 $x^2 = (\sqrt{x+6})^2$
 $x^2 = x+6$
 $x^2 - x - 6 = 0$

Example:
$$x = \sqrt{x+6}$$

 $x^2 = (\sqrt{x+6})^2$
 $x^2 = x+6$
 $x^2 - x - 6 = 0$
 $(x-3)(x+2) = 0$

Example:
$$x = \sqrt{x+6}$$

 $x^2 = (\sqrt{x+6})^2$
 $x^2 = x+6$
 $x^2 - x - 6 = 0$
 $(x-3)(x+2) = 0$
 $(x-3) = 0$ or $(x+2) = 0$

Example:
$$x = \sqrt{x+6}$$

 $x^2 = (\sqrt{x+6})^2$
 $x^2 = x+6$
 $x^2 - x - 6 = 0$
 $(x-3)(x+2) = 0$
 $(x-3) = 0$ or $(x+2) = 0$
 $x = 3$ or $x = -2$
Check $3 = \sqrt{3+6}$ $-2 = \sqrt{-2+6}$
 $3 = \sqrt{9}$ $-2 \neq 2$

5.
$$\sqrt{x+4} + 7 = 11$$

 $x = 12$

7.
$$\sqrt{3x+1} = \sqrt{4x-7}$$
 $x = 8$

6.
$$8\sqrt{x-1} = 24$$
 $x = 10$

8.
$$\sqrt{x-1} = x-3$$
 $x = 5$