Graphing Square Root Functions Lesson 10.1

Square Root Function

A square root function is a function that contains a square root with the independent variable in the radicand. The most basic square root function, also known as the parent square root function, is $y = \sqrt{x}$.

Square Root Graph $y = \sqrt{x}$.

- It looks like ½ of a parabola on its side.
- It starts at the vertex.
- Domain: $x \ge 0$
- Range: $y \ge 0$

EXAMPLE

The value of the radicand in the square root function cannot be negative. So, the domain of a square root function includes x-values for which the radicand is greater than or equal to 0.

Finding the Domain of a Square Root Function

Find the domain of $y = 3\sqrt{x-5}$.

The radicand cannot be negative. So, x - 5 is greater than or equal to 0.

EXAMPLE

The value of the radicand in the square root function cannot be negative. So, the domain of a square root function includes x-values for which the radicand is greater than or equal to 0.

Finding the Domain of a Square Root Function

Find the domain of $y = 3\sqrt{x-5}$.

The radicand cannot be negative. So, x - 5 is greater than or equal to 0.

 $x - 5 \ge 0$ Write an inequality for the domain.

EXAMPLE

The value of the radicand in the square root function cannot be negative. So, the domain of a square root function includes x-values for which the radicand is greater than or equal to 0.

Finding the Domain of a Square Root Function

Find the domain of $y = 3\sqrt{x-5}$.

The radicand cannot be negative. So, x - 5 is greater than or equal to 0.

$x-5 \ge 0$	Write an inequality for the domain.
$x \ge 5$	Add 5 to each side.

EXAMPLE

The value of the radicand in the square root function cannot be negative. So, the domain of a square root function includes x-values for which the radicand is greater than or equal to 0.

Finding the Domain of a Square Root Function

Find the domain of $y = 3\sqrt{x} - 5$.

The radicand cannot be negative. So, x - 5 is greater than or equal to 0.

$x-5 \ge 0$	Write an inequality for the domain.		
$x \ge 5$	Add 5 to each side		

The domain is the set of real numbers greater than or equal to 5.

On Your Own

Find the domain of the function.

1.
$$y = 10\sqrt{x}$$
 2. $y = \sqrt{x} + 7$
 3. $y = \sqrt{-x + 1}$
 $x \ge 0$
 $x \ge 0$
 $x \le 1$

Comparing Graphs of Square Root Functions

Graph $y = \sqrt{x} + 3$. Describe the domain and range. Compare the graph to the graph of $y = \sqrt{x}$.

Step 1: Make a table of values.

2

EXAMPLE

X	0	1	4	9	16
у	3	4	5	6	7

Step 2: Plot the ordered pairs.

Step 3: Draw a smooth curve through the points.

From the graph, you can see that the domain is $x \ge 0$ and the range is $y \ge 3$. The graph of $y = \sqrt{x} + 3$ is a translation is 3 units up of the graph of $y = \sqrt{x}$.

Comparing Graphs of Square Root Functions

Graph $y = -\sqrt{x-2}$. Describe the domain and range. Compare the graph to the graph of $y = \sqrt{x}$.

Step 1: Make a table of values.

3

EXAMPLE

X	2	3	4	5	6
у	0	-1	-1.4	-1.7	-2

Step 2: Plot the ordered pairs.

Step 3: Draw a smooth curve through the points.

From the graph, you can see that the domain is $x \ge 2$ and the range is $y \le 0$. The graph of $y = -\sqrt{x-2}$ is a reflection of the graph of $y = \sqrt{x}$ in the x-axis and then a translation 2 units to the right.

Graph the function. Describe the domain and range. Compare the graph to the graph of $y = \sqrt{x}$.

4.
$$y = \sqrt{x} - 4$$

domain: $x \ge 0$; range: $y \ge -4$; The graph of $y = \sqrt{x} - 4$ is a translation 4 units down of the graph of $y = \sqrt{x}$.

domain: $x \ge -5$; range: $y \ge 0$; The graph of $y = \sqrt{x+5}$ is a translation 5 units to the left of the graph of $y = \sqrt{x}$.

5

