Graphing Square Root Functions Lesson 10.1

Square Root Function

A square root function is a function that contains a square root with the independent variable in the radicand. The most basic square root function, also known as the parent square root function, is $y=\sqrt{x}$.

Square Root Graph $y=\sqrt{x}$.

- It looks like $1 / 2$ of a parabola on its side.
- It starts at the vertex.
- Domain: $x \geq 0$
- Range: $y \geq 0$

EXAMPLE (1) Finding the Domain of a Square Root Function

Remember

The value of the radicand in the square root function cannot be negative. So, the domain of a square root function includes x-values for which the radicand is greater than or equal to 0 .

Find the domain of $y=3 \sqrt{x-5}$.
The radicand cannot be negative. So, $x-5$ is greater than or equal to 0 .

EXAMPLE © Finding the Domain of a Square Root Function

Remember

The value of the radicand in the square root function cannot be negative. So, the domain of a square root function includes x-values for which the radicand is greater than or equal to 0 .

Find the domain of $y=3 \sqrt{x-5}$.
The radicand cannot be negative. So, $x-5$ is greater than or equal to 0 .

$$
x-5 \geq 0 \quad \text { Write an inequality for the domain. }
$$

EXAMPLE © Finding the Domain of a Square Root Function

Remember

The value of the radicand in the square root function cannot be negative. So, the domain of a square root function includes x-values for which the radicand is greater than or equal to 0 .

Find the domain of $y=3 \sqrt{x-5}$.
The radicand cannot be negative. So, $x-5$ is greater than or equal to 0 .

$$
\begin{aligned}
x-5 & \geq 0 & & \text { Write an inequality for the domain. } \\
x & \geq 5 & & \text { Add } 5 \text { to each side. }
\end{aligned}
$$

EXAMPLE © Finding the Domain of a Square Root Function

Remember

The value of the radicand in the square root function cannot be negative. So, the domain of a square root function includes x-values for which the radicand is greater than or equal to 0 .

Find the domain of $y=3 \sqrt{x-5}$.
The radicand cannot be negative. So, $x-5$ is greater than or equal to 0 .

$$
\begin{aligned}
x-5 & \geq 0 \\
x & \geq 5
\end{aligned} \quad \text { Write an inequality for the domain. }
$$

The domain is the set of real numbers greater than or equal to 5 .

On Your Own

Find the domain of the function.

1. $y=10 \sqrt{x}$
2. $y=\sqrt{x}+7$
3. $y=\sqrt{-x+1}$

$$
x \geq 0
$$

$x \geq 0$

$$
x \leq 1
$$

EXAMPLE 2 Comparing Graphs of Square Root Functions

Graph $y=\sqrt{x}+3$. Describe the domain and range. Compare the graph to the graph of $y=\sqrt{x}$.

Step 1: Make a table of values.

x	0	1	4	9	16
y	3	4	5	6	7

Step 2: Plot the ordered pairs.

Step 3: Draw a smooth curve through
 the points.

From the graph, you can see that the domain is $x \geq 0$ and the range is $y \geq 3$. The graph of $y=\sqrt{x}+3$ is a translation is 3 units up of the graph of $y=\sqrt{x}$.

EXAMPLE 3 Comparing Graphs of Square Root Functions

Graph $y=-\sqrt{x-2}$. Describe the domain and range. Compare the graph to the graph of $y=\sqrt{x}$.

Step 1: Make a table of values.

x	2	3	4	5	6
y	0	-1	-1.4	-1.7	-2

Step 2: Plot the ordered pairs.

Step 3: Draw a smooth curve through
 the points.

From the graph, you can see that the domain is $x \geq 2$ and the range is $y \leq 0$. The graph of $y=-\sqrt{x-2}$ is a reflection of the graph of $y=\sqrt{x}$ in the x-axis and then a translation 2 units to the right.

On Your Own

Graph the function. Describe the domain and range. Compare the graph to the graph of $y=\sqrt{x}$.
4. $y=\sqrt{x}-4$

5. $y=\sqrt{x+5}$
domain: $x \geq 0$; range: $y \geq-4$;
The graph of $y=\sqrt{x}-4$ is a translation 4 units down of the graph of $y=\sqrt{x}$.

domain: $x \geq-5$; range: $y \geq 0$;
The graph of $y=\sqrt{x+5}$ is a translation 5 units to the left of the graph of $y=\sqrt{x}$.

