8.1 Circles and Circumference

A **circle** is the set of all points in a plane that are the same distance from a point called the **center**.

Radius and Diameter

Words The diameter *d* of a circle is twice the radius *r*. The radius *r* of a circle is one-half the diameter *d*.

Algebra Diameter: d = 2r Radius: $r = \frac{d}{2}$

Finding a Radius and a Diameter

a. The diameter of a circle is20 feet. Find the radius.

a. The diameter of a circle is 20 feet. Find the radius.

$$r = \frac{d}{2}$$
 Radius of a circle

- - a. The diameter of a circle is 20 feet. Find the radius.

$$r = \frac{d}{2}$$
 Radius of a circle

$$=\frac{20}{2}$$
 Substitute 20 for d.

- a. The diameter of a circle is 20 feet. Find the radius.

$$r = \frac{d}{2}$$
 Radius of a circle

$$=\frac{20}{2}$$
 Substitute 20 for d.

a. The diameter of a circle is 20 feet. Find the radius.

$$r = \frac{d}{2}$$
 Radius of a circle

$$=\frac{20}{2}$$
 Substitute 20 for d .

The radius is 10 feet.

- The diameter of a circle is 20 feet. Find the radius.

$$r = \frac{d}{2}$$
 Radius of a circle

$$=\frac{20}{2}$$
 Substitute 20 for d .

The radius is 10 feet.

The radius of a circle is 7 meters. Find the diameter.

d=2rDiameter of a circle

- XAMPLE
 - a. The diameter of a circle is 20 feet. Find the radius.

$$r = \frac{d}{2}$$
 Radius of a circle

$$=\frac{20}{2}$$
 Substitute 20 for d.

The radius is 10 feet.

$$d = 2r$$
 Diameter of a circle

$$= 2(7)$$
 Substitute 7 for r .

a. The diameter of a circle is 20 feet. Find the radius.

$$r = \frac{d}{2}$$
 Radius of a circle

$$=\frac{20}{2}$$
 Substitute 20 for d .

The radius is 10 feet.

$$d = 2r$$
 Diameter of a circle

$$= 2(7)$$
 Substitute 7 for r .

a. The diameter of a circle is 20 feet. Find the radius.

$$r = \frac{d}{2}$$
 Radius of a circle

$$=\frac{20}{2}$$
 Substitute 20 for *d*.

The radius is 10 feet.

b. The radius of a circle is 7 meters. Find the diameter.

$$d = 2r$$
 Diameter of a circle

$$= 2(7)$$
 Substitute 7 for r .

The diameter is 14 meters.

The distance around a circle is called the **circumference**. The ratio $\frac{\text{circumference}}{\text{diameter}}$ is the same for *every* circle and is represented by the Greek letter π , called **pi**. The value of π can be approximated as 3.14 or $\frac{22}{7}$.

Circumference of a Circle

Words The circumference C of a circle is equal to π times the diameter d or π times twice the radius r.

Algebra $C = \pi d$ or $C = 2\pi r$

Finding Circumferences of Circles

a. Find the circumference of the flying disc. Use 3.14 for π .

Finding Circumferences of Circles

a. Find the circumference of the flying disc. Use 3.14 for π .

$$C = 2\pi r$$

Write formula for circumference.

Finding Circumferences of Circles

a. Find the circumference of the flying disc. Use 3.14 for π .

$$C = 2\pi r$$
 Write formula for circumference.

$$\approx$$
 2 • 3.14 • 5 Substitute 3.14 for π and 5 for r .

EXAMPLE 2 Finding Circumferences of Circles

a. Find the circumference of the flying disc. Use 3.14 for π .

$$C = 2\pi r$$
 Write formula for circumference.

$$\approx$$
 2 • 3.14 • 5 Substitute 3.14 for π and 5 for r .

EXAMPLE 2 Finding Circumferences of Circles

28 mm

a. Find the circumference of the flying disc. Use 3.14 for π .

$$C = 2\pi r$$
 Write formula for circumference.

$$\approx$$
 2 • 3.14 • 5 Substitute 3.14 for π and 5 for r .

- The circumference is about 31.4 inches.
- b. Find the circumference of the watch face. Use $\frac{22}{7}$ for π .

Finding Circumferences of Circles

a. Find the circumference of the flying disc. Use 3.14 for π .

$$C = 2\pi r$$
 Write formula for circumference.

$$\approx$$
 2 • 3.14 • 5 Substitute 3.14 for π and 5 for r .

- The circumference is about 31.4 inches.
- b. Find the circumference of the watch face. Use $\frac{22}{7}$ for π .

$$C = \pi d$$

28 mm

Write formula for circumference.

Finding Circumferences of Circles

a. Find the circumference of the flying disc. Use 3.14 for π .

$$C = 2\pi r$$
 Write formula for circumference.

$$\approx$$
 2 • 3.14 • 5 Substitute 3.14 for π and 5 for r .

: The circumference is about 31.4 inches.

$$C = \pi d$$
 Write formula for circumference.

$$\approx \frac{22}{7} \cdot 28$$
 Substitute $\frac{22}{7}$ for π and 28 for d .

a. Find the circumference of the flying disc. Use 3.14 for π .

$$C = 2\pi r$$
 Write formula for circumference.

$$\approx$$
 2 • 3.14 • 5 Substitute 3.14 for π and 5 for r .

- : The circumference is about 31.4 inches.
- b. Find the circumference of the watch face. Use $\frac{22}{7}$ for π .

$$C = \pi d$$
 Write formula for circumference.

$$\approx \frac{22}{7} \cdot 28$$
 Substitute $\frac{22}{7}$ for π and 28 for d .

: The circumference is about 88 millimeters.

(A) 5 inches

The circumference of the roll of caution tape decreases 10.5 inches after a construction worker uses some of the tape. Which is the best estimate of the diameter of the roll after the decrease?

- B 7 inches
- © 10 inches
- D 12 inches

-

The circumference of the roll of caution tape decreases 10.5 inches after a construction worker uses some of the tape. Which is the best estimate of the diameter of the roll after the decrease?

- (A) 5 inches
- (B) 7 inches
- © 10 inches
- D 12 inches

After the decrease, the circumference of the roll is 31.4 - 10.5 = 20.9 inches.

The circumference of the roll of caution tape decreases 10.5 inches after a construction worker uses some of the tape. Which is the best estimate of the diameter of the roll after the decrease?

- (A) 5 inches
- (B) 7 inches
- © 10 inches
- 12 inches

After the decrease, the circumference of the roll is 31.4 - 10.5 = 20.9 inches.

 $C = \pi d$ Write formula for circumference.

C = 31.4 in.

The circumference of the roll of caution tape decreases 10.5 inches after a construction worker uses some of the tape. Which is the best estimate of the diameter of the roll after the decrease?

- (A) 5 inches
- B 7 inches
- (C) 10 inches
- 12 inches

After the decrease, the circumference of the roll is 31.4 - 10.5 = 20.9 inches.

$$C = \pi d$$

Write formula for circumference.

$$20.9 \approx 3.14 \cdot d$$

 $20.9 \approx 3.14 \cdot d$ Substitute 20.9 for C and 3.14 for π .

The circumference of the roll of caution tape decreases 10.5 inches after a construction worker uses some of the tape. Which is the best estimate of the diameter of the roll after the decrease?

- A 5 inches
- (B) 7 inches
- © 10 inches
- D 12 inches

After the decrease, the circumference of the roll is 31.4 - 10.5 = 20.9 inches.

$$C = \pi d$$

Write formula for circumference.

$$20.9 \approx 3.14 \cdot d$$

Substitute 20.9 for C and 3.14 for π .

$$21 \approx 3d$$

Round 20.9 up to 21. Round 3.14 down to 3.

The circumference of the roll of caution tape decreases 10.5 inches after a construction worker uses some of the tape. Which is the best estimate of the diameter of the roll after the decrease?

- (A) 5 inches
- (B) 7 inches
- © 10 inches
- D 12 inches

After the decrease, the circumference of the roll is 31.4 - 10.5 = 20.9 inches.

$$C = \pi d$$

Write formula for circumference.

$$20.9 \approx 3.14 \cdot d$$

Substitute 20.9 for C and 3.14 for π .

$$21 \approx 3d$$

Round 20.9 up to 21. Round 3.14 down to 3.

$$7 = d$$

Divide each side by 3.

The circumference of the roll of caution tape decreases 10.5 inches after a construction worker uses some of the tape. Which is the best estimate of the diameter of the roll after the decrease?

- A 5 inches
- (B) 7 inches
- © 10 inches
- D 12 inches

After the decrease, the circumference of the roll is 31.4 - 10.5 = 20.9 inches.

$$C = \pi d$$

Write formula for circumference.

$$20.9 \approx 3.14 \cdot d$$

Substitute 20.9 for C and 3.14 for π .

$$21 \approx 3d$$

Round 20.9 up to 21. Round 3.14 down to 3.

$$7 = d$$

Divide each side by 3.

: The correct answer is **B**.

EXAMPLE 4 Finding the Perimeter of a Semicircular Region

A semicircle is one-half of a circle. Find the perimeter of the semicircular region.

4

Finding the Perimeter of a Semicircular Region

A semicircle is one-half of a circle. Find the perimeter of the semicircular region.

The straight side is 6 meters long. The distance around the curved part is one-half the circumference of a circle with a diameter of 6 meters

Finding the Perimeter of a Semicircular Region

A semicircle is one-half of a circle. Find the perimeter of the semicircular region.

The straight side is 6 meters long. The distance around the curved part is one-half the circumference of a circle with a diameter of 6 meters

$$\frac{C}{2} = \frac{\pi a}{2}$$

Divide the circumference by 2.

4

Finding the Perimeter of a Semicircular Region

A semicircle is one-half of a circle. Find the perimeter of the semicircular region.

The straight side is 6 meters long. The distance around the curved part is one-half the circumference of a circle with a diameter of 6 meters

$$\frac{C}{2} = \frac{\pi a}{2}$$

Divide the circumference by 2.

$$\approx \frac{3.14 \cdot 6}{2}$$

Substitute 3.14 for π and 6 for d.

4

Finding the Perimeter of a Semicircular Region

A **semicircle** is one-half of a circle. Find the perimeter of the semicircular region.

The straight side is 6 meters long. The distance around the curved part is one-half the circumference of a circle with a diameter of 6 meters

$$\frac{C}{2} = \frac{\pi d}{2}$$

Divide the circumference by 2.

$$\approx \frac{3.14 \cdot 6}{2}$$

Substitute 3.14 for π and 6 for d.

$$= 9.42$$

Simplify.

Finding the Perimeter of a Semicircular Region

A semicircle is one-half of a circle. Find the perimeter of the semicircular region.

The straight side is 6 meters long. The distance around the curved part is one-half the circumference of a circle with a diameter of 6 meters

$$\frac{C}{2} = \frac{\pi d}{2}$$
 Divide the circumference by 2.

$$\approx \frac{3.14 \cdot 6}{2}$$
 Substitute 3.14 for π and 6 for d .

$$= 9.42 + 6$$
 Add the distance across the diameter.

So, the perimeter is about 6 + 9.42 = 15.42 meters.